Q1. Machine Learning: Potpourri

(a) What is the minimum number of parameters needed to fully model a joint distribution \(P(Y, F_1, F_2, ..., F_n) \) over label \(Y \) and \(n \) features \(F_i \)? Assume binary class where each feature can possibly take on \(k \) distinct values. \(2^n - 1 \)

(b) Under the Naive Bayes assumption, what is the minimum number of parameters needed to model a joint distribution \(P(Y, F_1, F_2, ..., F_n) \) over label \(Y \) and \(n \) features \(F_i \)? Assume binary class where each feature can take on \(k \) distinct values. \(2n(k - 1) + 1 \)

(c) You suspect that you are overfitting with your Naive Bayes with Laplace Smoothing. How would you adjust the strength \(k \) in Laplace Smoothing?

- [] Increase \(k \)
- [] Decrease \(k \)

(d) While using Naive Bayes with Laplace Smoothing, increasing the strength \(k \) in Laplace Smoothing can:

- [] Increase training error
- [] Decrease training error
- [] Increase validation error
- [] Decrease validation error

(e) It is possible for the perceptron algorithm to never terminate on a dataset that is linearly separable in its feature space.

- [] True
- [] False

(f) If the perceptron algorithm terminates, then it is guaranteed to find a max-margin separating decision boundary.

- [] True
- [] False

(g) In binary perceptron where the initial weight vector is \(\vec{0} \), the final weight vector can be written as a linear combination of the training data feature vectors.

- [] True
- [] False

(h) For binary class classification, logistic regression produces a linear decision boundary.

- [] True
- [] False

(i) In the binary classification case, logistic regression is exactly equivalent to a single-layer neural network with a sigmoid activation and the cross-entropy loss function.

- [] True
- [] False

(j) You train a linear classifier on 1,000 training points and discover that the training accuracy is only 50%. Which of the following, if done in isolation, has a good chance of improving your training accuracy?

- [] Add novel features
- [] Train on more data

(k) You now try training a neural network but you find that the training accuracy is still very low. Which of the following, if done in isolation, has a good chance of improving your training accuracy?

- [] Add more hidden layers
- [] Add more units to the hidden layers
Q2. Neural Networks: Representation

For each of the piecewise-linear functions below, mark all networks from the list above that can represent the function exactly on the range $x \in (-\infty, \infty)$. In the networks above, relu denotes the element-wise ReLU nonlinearity: $\text{relu}(z) = \max(0, z)$. The networks G_i use 1-dimensional layers, while the networks H_i have some 2-dimensional intermediate layers.

(a)

The networks G_3, G_4, G_5 include a ReLU nonlinearity on a scalar quantity, so it is impossible for their output to represent a non-horizontal straight line. On the other hand, H_3, H_4, H_5 have a 2-dimensional hidden layer, which allows two ReLU elements facing in opposite directions to be added together to form a straight line. The second subpart requires a bias term because the line does not pass through the origin.

(b)

These functions include multiple non-horizontal linear regions, so they cannot be represented by any of the networks G_i which apply ReLU no more than once to a scalar quantity.

The first subpart can be represented by any of the networks with 2-dimensional ReLU nodes. The point of nonlinearity occurs at the origin, so nonzero bias terms are not required.
The second subpart has 3 points where the slope changes, but the networks H_i only have a single 2-dimensional ReLU node. Each application of ReLU to one element can only introduce a change of slope for a single value of x.

Both functions have two points where the slope changes, so none of the networks $G_i; H_1, H_2$ can represent them.

An output bias term is required for the first subpart because one of the flat regions must be generated by the flat part of a ReLU function, but neither one of them is at $y = 0$.

The second subpart doesn’t require a bias term at the output: it can be represented as $-\text{relu}(\frac{-x+1}{2}) - \text{relu}(x + 1)$. Note how if the segment at $x > 2$ were to be extended to cross the x axis, it would cross exactly at $x = -1$, the location of the other slope change. A similar statement is true for the segment at $x < -1$.

3