Applications of LFSRs

- Can be used as a random number generator:
 - Sequence is a pseudo-random sequence
 - Numbers appear in random sequence
 - Repeats every $2^n - 1$ patterns
- Random numbers useful in:
 - Computer graphics
 - Cryptography
 - Automatic testing
- Used for error detection and correction
 - CRC (cyclic redundancy codes)
 - Ethernet uses them
Concept: Redundant Check

- Send a message M and a "check" word C
- Simple function on <M,C> to determine if both received correctly (with high probability)
- Example: XOR all the bytes in M and append the "checksum" byte, C, at the end
 - Receiver XORs <M,C>
 - What should result be?
 - What errors are caught?

bit i is XOR of ith bit of each byte

Example: TCP Checksum

- TCP Checksum a 16-bit checksum, consisting of the one's complement of the one's complement sum of the contents of the TCP segment header and data, is computed by a sender, and included in a segment transmission. (note end-around carry)
- Summing all the words, including the checksum word, should yield zero

Example: Ethernet CRC-32

- I have a msg polynomial M(x) of degree m
- We both have a generator poly G(x) of degree m
- Let r(x) = remainder of M(x) / G(x)
 - r(x) is of degree n
- What is (M(x) x^n – r(x) / G(x) ?
 - n-bit of zero at the end
- So I send you M(x) x^n – r(x)
 - m+1 degree polynomial
 - You divide by G(x) to check
 - M(x) is just the m most significant coefficients, r(x) the lower m
- n-bit Message is viewed as coefficients of n-degree polynomial over binary numbers

Announcements

- Reading
 - KELBY IEEE 802.3 Cyclic Redundancy Check (pages 1-3)
- Final on 12/15
- What’s Going on in EECS?
 - Towards simulation of a Digital Human
 - Yelick: Simulation of the Human Heart Using the Immersed Boundary Method on Parallel Machines

Galois Fields - the theory behind LFSRs

- LFSR circuits performs multiplication on a field.
 - A field is defined as a set with the following:
 - two operations defined on it:
 - "addition" and "multiplication"
 - closed under these operations
 - associative and distributive laws hold
 - additive and multiplicative identity elements
 - additive inverse for every element
 - multiplicative inverse for every non-zero element
 - Example fields:
 - set of rational numbers
 - set of real numbers
 - set of integers is not a field (why?)
 - Finite fields are called Galois fields.
 - Example:
 - Binary numbers 0,1 with XOR as "addition" and AND as "multiplication".
 - Called GF(2).
 - 0+1 = 1
 - 1+1 = ?
 - 0+1 = 7
 - 1+1 = 7
Galois Fields - The theory behind LFSRs

- Consider polynomials whose coefficients come from GF(2).
- Each term of the form x^i is either present or absent.
- Examples: $0,1,x,x^2$, and $x^2 + x^3 + 1$.

 \[x^2 + x^3 + 1 = x^2 + x + 1 + x^2 + x^3 + 1 - x^2 \]

- With addition and multiplication these form a field:
 - "Add": XOR each element individually with no carry:
 \[x^2 + x^3 + 1 + x^2 + 1 = x^2 + x + 1 \]

 - "Multiply": multiplying by x^i is like shifting to the left.
 \[x^2 + x + 1 \]

So what about division (mod)

\[x^4 + x^2 \equiv x^4 + x \quad \text{with remainder 0} \]

\[x^4 + x^2 + 1 \equiv x^4 + x^2 \quad \text{with remainder 1} \]

\[x + 1 \equiv x^4 + 0x + 0 \]

\[x + 1 \equiv x^4 + 0x + 1 \]

\[x^4 + x^2 \equiv x^3 + 1 \]

\[x^4 + x^2 \equiv x^3 + x \]

Polynomial division

- When MSB is zero, just shift left, bringing in next bit.
- When MSB is 1, XOR with divisor and shift!

CRC encoding

- These polynomials form a Galois (finite) field if we take the results of this multiplication modulo a prime polynomial $p(x)$.
 - A prime polynomial is one that cannot be written as the product of two non-trivial polynomials $p(x)$.
 - Perform modulo operation by subtracting a (polynomial) multiple of $p(x)$ from the result. If the multiple is 1, this corresponds to XOR-ing the result with $p(x)$.
 - For any degree, there exists at least one prime polynomial.
 - With it we can form $GF(2^n)$.

- Additionally, ...
 - Every Galois field has a primitive element, α, such that all non-zero elements of the field can be expressed as a power of α. By raising α to powers (modulo $p(x)$), all non-zero field elements can be formed.
 - Certain choices of $p(x)$ make the simple polynomial x the primitive element. These polynomials are called primitive, and one exists for every degree.
 - For example, $x^4 + x$ is a primitive element and successive powers of α will generate all non-zero elements of $GF(16)$. Example on next slide.
Galois Fields – Primitives

\[
\begin{align*}
\alpha^0 &= 1 \\
\alpha^1 &= \alpha \\
\alpha^2 &= \alpha^2 \\
\alpha^3 &= \alpha^3 \\
\ldots \\
\alpha^k &= 1
\end{align*}
\]

- Note this pattern of coefficients matches the bits from our 4-bit LFSR example.

- In general finding primitive polynomials is difficult. Most people just look them up in a table, such as:

Building an LFSR from a Primitive Poly

- For \(k \)-bit LFSR number the flip-flops with FF1 on the right.
- The feedback path comes from the \(Q \) output of the leftmost FF.
- Find the primitive polynomial of the form \(x^n + 1 \).
- The \(x^n + 1 \) term corresponds to connecting the feedback directly to the \(D \) input of FF1.
- Each term of the form \(x^i \) corresponds to connecting an xor between FF = and \(x^i \).
- 4-bit example, uses \(x^2 + x + 1 \)
 - \(x^2 \) as \(FF \) of FF output
 - \(x \) as xor between FF1 and FF2
 - \(x^2 \) as FF1’s D input
- To build an \(n \)-bit LFSR, use the primitive polynomial \(x^n + x^i + x^j + x + 1 \) and connect xors between FF2 and FF3, FF3 and FF4, and FF4 and FF5.

\[
\text{Generating Polynomials}
\]

- CR-16: \(G(x) = x^{16} + x^{15} + x^2 + 1 \)
 - detects single and double bit errors
 - All errors with an odd number of bits
 - Burst errors of length 16 or less
 - Most errors for longer bursts
- CRC-32: \(G(x) = x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^9 + x^8 + x^7 + x^6 + x^4 + x + 1 \)
 - Used in ethernet
 - Also 32 bits of 1 added on front of the message
 - Initialize the LFSR to all 1s

Motivation

Why should a digital designer care about power consumption?

- Portable devices:
 - handhelds, laptops, phones, MP3 players, cameras, … all need to run for extended periods on small batteries without recharging
 - Devices that need regular recharging or large heavy batteries will lose out to those that don’t.
- Power consumption important even in “tethered” devices.
 - System cost tracks power consumption:
 - power supplies, distribution, heat removal
 - power conservation, environmental concerns
- In a span of 10 years we have gone from designing without concern for power consumption to (in many cases) designing with power consumption as the primary design constraint!
Battery Technology

- Battery technology has moved very slowly
 - Moore’s law does not seem to apply
- Li-Ion and NiMh still the dominate technologies
- Batteries still contribute significant to the weight of mobile devices

Basics

- **Warning!** In everyday language, the term “power” is used incorrectly in place of “energy.”
- Power is *not* energy.
- Power is *not* something you can run out of.
- Power can *not* be lost or used up.
- It is *not* a thing, it is merely a rate.
- It can *not* be put into a battery any more than velocity can be put in the gas tank of a car.

Power in CMOS

- **Switching Energy:**
 - energy used to switch a node

 ![Switching Energy Diagram]

 Calculate energy dissipated in pullup:

 \[
 E_{pu} = \int_{t_i}^{t_f} P(t)\,dt = \int_{V_{dd}}^{(V_{dd} - v)}(V_{dd} - v)\,i(t)\,dt = \int_{V_{dd}}^{V_{dd} - v} (V_{dd} - v) \cdot c (dv/dt)\,dt =

 = c V_{dd} \int_{V_f}^{V_i} dv - c \int_{V_f}^{V_i} v \cdot dV = c V_{dd}^2 - 1/2 c V_{dd}^2 \left[1/2 V_{dd}^{-2}\right]

 \]

 - Energy supplied
 - Energy stored
 - Energy dissipated

 An equal amount of energy is dissipated on pullup.
Switching Power

- **Gate power consumption:**
 - Assume a gate output is switching its output at a rate of:

 \[
 P_{\text{avg}} = \frac{E}{\Delta t} = \text{switching rate} \cdot E_{sw}
 \]

 Therefore:

 \[
 P_{\text{avg}} = \alpha \cdot f \cdot \frac{1}{2} cV_{dd}^2
 \]

- **Chip/circuit power consumption:**

 \[
 P_{\text{avg}} = n \cdot \alpha_{\text{avg}} \cdot f \cdot \frac{1}{2} cV_{dd}^2
 \]

 number of nodes (or gates)

Other Sources of Energy Consumption

- **“Short Circuit” Current:**

 \[
 I_{\text{ds}}(V_{gs}) = \frac{1}{2} \beta V_{gs}^2
 \]

- **Device Ids Leakage:**

 - Junction Diode Leakage:
 - \(V_{out} = V_{dd} \)
 - \(V_{out} \approx V_{dd} \)
 - \(I_{ds} \) (drain) current
 - \(I_{ds} \) (source) current
 - \(V_{gs} \) (gate-source voltage)
 - \(V_{gs} \) (source-gate voltage)
 - \(N \) (number of nodes)
 - \(K \) (transistor size)
 - \(f \) (clock frequency)
 - \(V_{dd} \) (power supply voltage)
 - \(n \) (number of nodes)
 - \(c \) (channel length)
 - \(\alpha \) (activity factor)
 - \(\beta \) (transconductance)
 - \(\psi \) (channel width)
 - \(\mu \) (mobility)
 - \(\rho \) (resistivity)

Controlling Energy Consumption

What control do you have as a designer?

- **Largest contributing component to CMOS power consumption is switching power:**

 \[
 P_{\text{avg}} = n \cdot \alpha_{\text{avg}} \cdot f \cdot \frac{1}{2} cV_{dd}^2
 \]

- **Factors influencing power consumption:**

 - \(n \): total number of nodes in circuit
 - \(\alpha \): activity factor (probability of each node switching)
 - \(f \): clock frequency (does this effect energy consumption?)
 - \(V_{dd} \): power supply voltage
 - What control do you have over each factor?
 - How does each affect the total Energy?

Power / Cost / Performance

- **Parallelism to trade cost for performance.**

 - As we trade cost for performance what happens to energy?

 \[
 E_{\text{total}} = E_{\text{gate}} + E_{\text{buf}} + E_{\text{inv}} + E_{\text{add}} + E_{\text{mul}} + E_{\text{mux}}
 \]

- **The lowest energy consumer is the solution that minimizes cost without time multiplexing operations.**