8/9/10

1.4 \cdot \sin(\omega t) \quad R \quad V_{in} \quad V_{out}

E1)

Load line for \(V_{in} = 0.7V \)

E2) w/ simple model:

ON \& V_{in} > 0.5V
OFF \& V_{in} < 0.5V

See webcast for details or email me and I'll write it up.
E3)

For this problem,

\[V_K = 0.7 \text{V}. \]

Guess 1: Both off

\[V_{4K} = 0 \text{V} \quad \text{since} \quad i_{5K} = 0. \]

This means \(V_{D1} = 10 \text{V} \). But this is a contradiction with our guess.

Guess 2: D1 off, D2 on

By similar argument, \(i_{4K} = 0 \), so \(V_{D2} = 10 - 2.4 \text{V} = 6.6 \text{V} \) - contradiction!

Guess 3: D1 on, D2 off

Many ways to solve!

\[V_m = 0.98 \text{mA} \times 5k \times 10k = 4.65 \text{V} \]

Guess worked, so we can stop.

\[V_{D2} = 3 - 4.65 \text{V} < 0.7 \text{V} \]
But since we're learning, let's do the last one:

\[I_2 = 0.7V \]
\[V_{ab} = 0.7V \]
\[I_1 > 20A \]
\[10 > 20A \]

\[V_p = 2.3V + 0.7V = 3V \]

\[I_m = \frac{V_p}{5k} \]

\[I_2 + I_m = I_n \]
\[I_2 = I_n - I_m \]

\[2.3V - 7V \]

Negative, so contradiction.

Let's continue discussing our AC circuit. Let's see what happens if we add a capacitor in parallel with our output resistor.

\[V_K = 0.7V \]

Assume \(A \gg V_K \)

\[V = 0.5V \]

Valid if \(V < A \) (sin)
There are 2 possible configurations.

ON:

\[V_{on} \]
\[R \]
\[C \]
\[V_c = V_{in} - 0.7V \]

Require that:
\[i_d \geq 0 \] or \[b \]
\[V_c < \frac{V_{in} - 0.7}{R} \]
\[C \cdot \frac{d(V_{in} - 0.7)}{dt} + \frac{V_{in} - 0.7}{R} = 0 \]

\[\frac{dV_n}{dt} \]
\[\frac{RC}{R} \]
\[V_c = V_{in} - 0.7V \]

OFF:

\[V_c = A \sin(\omega t) - 0.7V \]

Require that:
\[V < V_{in} \]
\[A \sin(\omega t) \]
\[V_{in} - 0.7 \]
\[e^{-\frac{t}{RC}} \]

\[V_{in} \]
\[V(t) \]
\[V_{in}(t) = 0.7V \]

We see: In between \(V_1 \) and \(V_2 \), LHS is getting smaller and RHS is getting larger.

At \(V_1 \),
\[\frac{dV_n}{dt} = 0, \quad V_{in} = A \] so:
\[0 > 0.7 - A \]
\[\frac{RC}{RC} \]

Yes, since 457.7.

At \(V_2 \),
\[\frac{dV_n}{dt} < 0, \quad V_{in} = 0 \] so:
\[negative \quad number \]
\[0.7 \]
\[\frac{RC}{RC} \]

No!

Since ON at \(V_1 \) and OFF at \(V_2 \), we know it must switch to OFF at some \(V_3 \).
Between t_3 and t_5, diode cannot turn off. This would violate the principle that capacitor voltage cannot change instantly.

At t_5, diode cannot remain OFF, since this condition requires that $V_c > A\sin(\omega t) - 0.7V$ and if it stayed OFF it would decay below $A\sin(\omega t) - 0.7V$ which is increasing.

Thus from t_5 to $t_2 + T$, diode is on, and the cycle repeats itself.

Thus it looks like:

![Voltage waveform](image)

What happens if $V_c = 0$ and we start at $V_n = 0.7V$?

![Voltage waveform](image)
What happens as C gets very small?

Same as before?

What happens if C gets very large?

Limit as $C \to \infty$?

Half-wave rectifier:

"Rectifies" AC source to DC.
- on rising: AC restores capacitor
- on falling: AC is ignored.

Full-wave rectifier

Can also use as an envelope detector!
Assume $V_{in} \gg V_k$.

When $V_{in} > 0$,

\[
V_R = V_{in} - 2V_k \quad \text{or} \quad V_R \approx V_{in}
\]

for small V_k.

When $V_{in} < 0$:

\[
R_L = -(V_{in} - 2V_k) \quad \text{or} \quad \text{for small } V_k, \quad R_L \approx -V_{in}
\]

So $R_L \approx |V_{in}|$

Capacitor trick still works too.

Voltage Boost.