MOSFET Physical Parameters

OUTLINE

- Making Logic Gate Circuits
- Comparison of NMOS and CMOS
- Resistivity
- Resistance and Sheet Resistance

Reading

Mainly these presentation slides
Some Hambley 12.1-12.3

Logic Gates – How are they built in practice?

A Valve is a Transistor \(V_{IN} \)

Current flows when \(V_{IN} \) is high Can be modeled by a 10k\(\Omega \) resistor

Valves in Series \(\Rightarrow \) NAND

Valves in Parallel \(\Rightarrow \) NOR

What goes in this box? How does it affect digital performance?

Problems in the NMOS Inverter

Voltage Transfer Function: \(V_{OUT} \) vs. \(V_{IN} \)

The \(V_{OUT} \) vs. \(V_{IN} \) characteristic is another view of the logic gate that is used to determine the inverting and noninverting nature of a gate.

Voltage Transfer Function NMOS Inverter w/o Load

Complete a VTC like this for the device in the Homework
CMOS Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down devices or networks.

<table>
<thead>
<tr>
<th>VIN</th>
<th>Pull-Up Network</th>
<th>Pull-Down Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIN-D</td>
<td>VOUT</td>
<td>VOUT</td>
</tr>
<tr>
<td>VIN-U</td>
<td>IOUT</td>
<td>IOUT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VIN</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td></td>
</tr>
</tbody>
</table>

- p-type MOS Transistor (PMOS)
- n-type MOS Transistor (NMOS)

Find Points That Satisfies Both Devices for Each V_IN

<table>
<thead>
<tr>
<th>VOUT(V)</th>
<th>I_OUT(µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Voltage Transfer Function for the CMOS Inverter Circuit

- Vertical section due to zero slope of I_OUT vs. V_OUT in the saturation region of both devices.

Current Density

The current density \(J \) is the current per unit area. If we have \(N \) positive charges per unit volume moving with average speed \(v \) in the +x direction, then the current density in the +x direction is just \(J = qNv \).

Example:
- \(v \) = 2 x 10^4 holes/cm^2 moving to the right at 2 x 10^4 cm/sec
- \(J = 1.6 x 10^{-19} x 2 x 10^{16} x 2 x 10^4 \) = 64 A/cm^2

Suppose this occurs in a conductor 2 \(\mu \)m wide and 1 \(\mu \)m thick:

\[I = J \times A = 64 \times (2 \times 10^{-4} \times 1 \times 10^{-4}) = 1.28 \mu A \]

Electrical Conductivity \(\sigma \)

When an electric field is applied, current flows due to drift of mobile electrons and holes:

- electron current density: \(J_n = (-q)n \mu_n E \)
- hole current density: \(J_p = (+q)p \mu_p E \)
- total current density: \(J = J_n + J_p = (qn \mu_n + qp \mu_p)E \)

\[\sigma \equiv qn \mu_n + qp \mu_p \] (Units: \(\Omega^{-1} \cdot \text{cm}^{-1} \))

Electrical Resistivity \(\rho \)

\[\rho \equiv 1 \over \sigma = 1 \over qn \mu_n + qp \mu_p \]

- \(\rho \equiv 1 \over qn \mu_n \) for n-type mat'l
- \(\rho \equiv 1 \over qp \mu_p \) for p-type mat'l

(Units: ohm-cm)
Consider a Si sample doped with $10^{16}/\text{cm}^3$ Boron. What is its resistivity?

Answer:

\[N_A = 10^{16}/\text{cm}^3, \quad N_D = 0 \quad (N_A >> N_D \rightarrow \text{p-type}) \]

\[\rho = \frac{1}{q_n \mu_n + q_p \mu_p} \approx \frac{1}{q_p \mu_p} \]

\[\approx \left(1.6 \times 10^{-19}\right)(10^{16})(450)^{-1} = 1.4 \Omega - \text{cm} \]

From μ vs. $(N_A + N_D)$ plot

Example Calculation of Resistivity

\[\text{Example Calculation of Resistivity} \]

\[\rho = \frac{L}{Wt} = \frac{R}{W} \Rightarrow R_s = \frac{\rho}{t} \]
(Unit: ohms/square)

L, W, $t = \text{length, width, thickness}$
R_s is the resistance when $W = L$

- The R_s value for a given layer in an IC technology is used
 - for design and layout of resistors
 - for estimating values of parasitic resistance in a circuit

\[R = R_s, \quad R = R_s/2, \quad R = 2R_s, \quad R = 3R_s, \quad R \approx 2.6R_s \]

Integrated-Circuit Resistors

The resistivity ρ and thickness t are fixed for each layer in a given manufacturing process

A circuit designer specifies the length L and width W, to achieve a desired resistance R

\[R = R_s \frac{L}{W} \]
(Unit: ohms/square)

Example: Suppose we want to design a 5 kΩ resistor using a layer of material with $R_s = 200 \Omega$.

Resistance of Silicon Films (at low E fields)

at low fields \[\sigma = q \frac{N}{\mu} \]
where $N = n$ or p and $\mu = \mu_n$ or μ_p

So $\sigma = q n \mu_n$ for electrons in n-type Si
and $\sigma = q p \mu_p$ for holes in p-type Si

In other words \[R = 1/(q \mu_n N A) \] in N-type Silicon

Where (N_A, t) is the number of donors implanted per unit area, and multiplying by q, we have the donor charge implanted per unit area. (μ_n is the mobility of the electrons).

Similarly \[R = 1/(q \mu_p N A) \] in P-type Silicon

Where (N_A, t) is the number of acceptors implanted per unit area, and multiplying by q, we have the acceptor charge implanted per unit area.

We do not need uniformly doping versus depth!

Silicon Resistor by Ion Implantation

Example: 1 μm thick n-type silicon layer which was implanted with 10^{11} donors cm$^{-2}$. (Thus $N_d = 10^{12} / 10^4 = 10^8$ cm$^{-2}$)

$\sigma = q n \mu_n = (1.6 \times 10^{-19} \text{C})(10^{18} \text{cm}^{-3})(1000 \text{cm}^2 / \text{Vsec}) = 1.6 \text{S/cm}$

$\rho = 1/\sigma = 0.625 \Omega \text{cm}$

Sheet resistivity, R given by:

\[R = \frac{1}{2 \rho} = 6.25 \text{ K}\Omega /\text{square} \]

But this can be obtained directly from the implant "Q" of $1.6 \times 10^{10} / 10^4 = 1.6 \times 10^6$ thus

\[R = \frac{1}{2 \rho Q} = 6.25 \text{ K}\Omega /\text{square} \]

Physics of Current Flow, Resistance, Resistivity

\[E = \frac{V}{L} \]

\[I = \frac{V}{R} \]

L, W, $t = \text{length, width, thickness}$

\[R = \frac{\rho L}{A} = \frac{1}{q \mu N} \frac{L}{W t} \]

From μ vs. $(N_A + N_D)$ plot

\[q N t \] has the dimensions of charge per unit area and represents the charge per unit area in a film of thickness t when the film has N carriers/cm3 and is t units thick. Thus we call $q N t$ the "Q" and $R = (L/W)/M = L/W R_s$.

Where R_s is the resistance of a "square" of the film. Clearly if L is four times W, then $R = 4 R_s$.

Sheet Resistance R_s

\[R = \frac{L}{Wt} = \frac{R_s}{W} \quad \Rightarrow \quad R_s = \frac{\rho}{t} \]
(Unit: ohms/square)

R_s is the resistance when $W = L$

- The R_s value for a given layer in an IC technology is used
 - for design and layout of resistors
 - for estimating values of parasitic resistance in a circuit

\[R = R_s, \quad R = R_s/2, \quad R = 2R_s, \quad R = 3R_s, \quad R \approx 2.6R_s \]

Resistor layout (top view)

Space-efficient layout
Device Layout and Process

Process Flow
- Active Area
- n-Well Implant
- Poly
- n Source/Drain
- p Source/Drain
- Insulator
- Contacts
- Metal

Device Layout Compensates Mobility Diff.

- The desired device current drive can be changed by adjusting the device layout.
- A lower mobility PMOS pull-up device can be made larger than the associated NMOS pull-down device for better balance.