MOSFET Physical Parameters

Lecture 29, 11/07/05

OUTLINE

- Making Logic Gate Circuits
- Comparison of NMOS and CMOS
- Resistivity
- Resistance and Sheet Resistance

Reading

Mainly these presentation slides
Some Hambley 12.1-12.3

Midterm #2 Exam Results
Logic Gates – How are they built in practice?

A Valve is a Transistor V_{IN}

- Current flows when V_{IN} is high
- Can be modeled by a $10k\Omega$ resistor

Valves in Series \Rightarrow NAND

Valves in Parallel \Rightarrow NOR

What goes in this box?

How does it affect digital performance?

Voltage Transfer Function: V_{OUT} vs. V_{IN}

The V_{OUT} vs. V_{IN} characteristic is another view of the logic gate that is used to determine the inverting and noninverting nature of a gate.
Problems in the NMOS Inverter

Problem #1
Current when V_{OUT} Low

Problem #2
Poor V_{OUT} High with Load

Open Load

Load

Voltage Transfer Function NMOS Inverter w/wo Load

Complete a VTC like this for the device in the Homework
CMOS Inverter Example

It may be simpler to just think of PMOS and NMOS transistors instead of a general 3 terminal pull-up or pull-down devices or networks.

Find Points That Satisfies Both Devices for Each V_{IN}

![Graph showing solution points for different V_{IN} values](image-url)
Voltage Transfer Function for the CMOS Inverter Circuit

Current Density

The current density \(J \) is the current per unit area
\((J = \frac{I}{A}; A \) is the cross-sectional area of the conductor)

If we have \(N \) positive charges per unit volume moving with average speed \(v \) in the \(+x\) direction, then the current density in the \(+x\) direction is just \(J = qNv \)

Example:
- \(N = 2 \times 10^{16} \) holes/cm\(^3\) moving to the right at 2 x 10\(^4\) cm/sec
- \(J = 1.6 \times 10^{-19} \times 2 \times 10^{16} \times 2 \times 10^4 = 64 \text{ A/cm}^2 \)

Suppose this occurs in a conductor 2 \(\mu \text{m} \) wide and 1 \(\mu \text{m} \) thick:
\[
I = J \times A = 64 \times (2 \times 10^{-4} \times 1 \times 10^{-4}) = 1.28 \mu\text{A}
\]
Electrical Conductivity σ

When an electric field is applied, current flows due to drift of mobile electrons and holes:

- **Electron current density:** $J_n = (-q)nv_n = qn\mu_n E$

- **Hole current density:** $J_p = (+q)pv_p = qp\mu_p E$

- **Total current density:** $J = J_n + J_p = (qn\mu_n + qp\mu_p)E$

$$J = \sigma E$$

Conductivity

$$\sigma \equiv qn\mu_n + qp\mu_p$$ (Units: Ω-cm$^{-1}$)

Electrical Resistivity ρ

$$\rho \equiv \frac{1}{\sigma} = \frac{1}{qn\mu_n + qp\mu_p}$$

- $\rho \approx \frac{1}{qn\mu_n}$ for n-type mat'l

- $\rho \approx \frac{1}{qp\mu_p}$ for p-type mat'l

(Units: ohm-cm)
Consider a Si sample doped with 10^{16}/cm3 Boron. What is its resistivity?

Answer:

$N_A = 10^{16}$/cm3, $N_D = 0$ \hspace{1cm} ($N_A >> N_D \rightarrow p$-type)

$\rightarrow p \approx 10^{16}$/cm3 and $n \approx 10^4$/cm3

$$\rho = \frac{1}{qn\mu_n + qp\mu_p} \approx \frac{1}{qp\mu_p}$$

$$= \left[(1.6 \times 10^{-19}) (10^{16}) (450) \right]^{-1} = 1.4 \ \Omega - \text{cm}$$

From μ vs. $(N_A + N_D)$ plot

Example Calculation of Resistivity

Physics of Current Flow, Resistance, Resistivity

$$E = \frac{V}{L}.$$

$$I = \frac{V}{R}.$$

$$R = \rho \frac{L}{A} = \frac{1}{qN}\frac{L}{W} t = \frac{(L/W)}{\mu(qN)}.$$

But $qN t$ has the dimensions of charge per unit area and represents the charge per unit area in a film of thickness t when the film has N carriers/cm3 and is t units thick. Thus we call $qN t$ the "Q" and

$$R = \frac{(L/W)}{\mu Q} = \frac{L}{W} R.$$

Where R is the resistance of a "square" of the film. Clearly if L is four times W, then $R = 4 R$.

Sheet Resistance R_s

\[
R = \rho \frac{L}{Wt} = R_s \frac{L}{W} \quad \Rightarrow \quad R_s = \frac{\rho}{t} \quad \text{(Unit: ohms/square)}
\]

(L, W, t = length, width, thickness)

- R_s is the resistance when $W = L$

- The R_s value for a given layer in an IC technology is used
 - for design and layout of resistors
 - for estimating values of parasitic resistance in a circuit

\[
\begin{align*}
R &= R_s \\
R &= R_s/2 \\
R &= 2R_s \\
R &= 3R_s
\end{align*}
\]

Integrated-Circuit Resistors

The resistivity ρ and thickness t are fixed for each layer in a given manufacturing process

A circuit designer specifies the length L and width W, to achieve a desired resistance R

\[
R = R_s \left(\frac{L}{W} \right)
\]

Example: Suppose we want to design a 5 kΩ resistor using a layer of material with $R_s = 200 \ \Omega/\square$

Resistor layout (top view)
Space-efficient layout
Resistance of Silicon Films (at low \(E \) fields)

at low fields \(\sigma = q \ N \ \mu \) where \(N = n \) or \(p \) and \(\mu = \mu_n \) or \(\mu_p \)

So \(\sigma = q \ n \ \mu_n \) for electrons in n-type Si
and \(\sigma = q \ p \ \mu_p \) for holes in p-type Si

In other words \(R = 1/ \mu N (qN_d t) = 1/ \mu N (Q_d) \) in N-type Silicon

Where \((N_d, t)\) is the number of donors implanted per unit area,
and multiplying by \(q \), we have the donor charge implanted per unit area. (\(\mu_n \) is the mobility of the electrons).

Similarly \(R = 1/ \mu p (qN_A t) = 1/ \mu p (Q_A) \) in P-type Silicon

Where \((N_A, t)\) is the number of acceptors implanted per unit area, and multiplying by \(q \), we have the acceptor charge implanted per unit area.

We do not need uniformly doping versus depth!

Silicon Resistor by Ion Implantation

Example: 1 \(\mu \)m thick n-type silicon layer which was implanted with \(10^{12} \) donors cm\(^{-2} \). (Thus \(N_d = 10^{12} / 10^{-4} = 10^{16} \) cm\(^{-3} \))
\(
\sigma = q \ n \ \mu_n = (1.6 \times 10^{-19} \) C \() (10^{16} \) cm\(^{-3} \) \() (1000 \) cm\(^2\) / Vsec \() = 1.6 \) S/cm
\(\rho = 1 / \sigma = 0.625 \) \(\Omega \) cm

Sheet resistivity, \(R \) given by:
\(R = [1/(\sigma \ t)] = 6.25 \) K \(\Omega \) /square

But this can be obtained directly from the implant
"\(Q \)" of \(1.6 \times 10^{-19} \times 10^{12} = 1.6 \times 10^{-2} \) thus
\(R = [1/(Q \ \mu)] = 6.25 \) K \(\Omega \) /square

\[R_{AB} = 4 \times 6.25 = 25 \) K\(\Omega \]
Device Layout and Process

Process Flow
- Active Area
- n-Well Implant
- Poly
- n Source/Drain
- p Source/Drain
- Insulator
- Contacts
- Metal

Device Layout Compensates Mobility Diff.

- The desired device current drive can be changed by adjusting the device layout.
- A lower mobility PMOS pull-up device can be made larger than the associated NMOS pull-down device for better balance.