EE 290D Module 1 Review
- Device Physics

Nuo Xu
EECS Department, UC Berkeley
MOSFET Performance Metrics
- Mostly for Digital Logic Applications

Electrostatic Integrity → how good an OFF State

- V_{TH} vs. L_g
- SS
- GIDL
- DIBL

Driving Capability → how good an ON State

- I_{ds} vs. V_{gs}
- I_{ds} vs. V_{ds}
- I_{OFF} vs. I_{ON}
- I_{OFF} vs. I_{EFF}
- G_m vs. V_{gs}
- μ_{eff} vs. E_{eff}

- Mobility, ON-state Velocity
- R_{SD}

Punchthrough

- GIDL
- SS
- GIDL
- SS
- DIBL
Planar Bulk MOSFET

conventional devices are (100)/<110>

• Solutions to reduce I_{OFF}
 - Scale length: (Lec.2)
 $$l = \sqrt{\frac{\varepsilon_{Si}}{\varepsilon_{ox}}} t_{ox} X_{dep}$$

 Increase N_{ch} → Use retrograde well doping or HALO
 → Use ultra-shallow-junctions (USJ)

• Quantum confinement effect: (Lec.4)
 - Quantum capacitance
 - Electrons show smaller T_{inv} than holes.

• Sub-bands (Lec.4,5)
 - Electrons: the lowest sub-bands from Δ_2 valleys.
 - Holes: the lowest sub-bands from HHs.

• Carrier mobility: (Lec.5)
 - Electron’s mobility is 3 times the hole’s.
Ultra-Thin-Body MOSFET
conventional devices are (100)/<110>

• Solutions to reduce I_{OFF}: (Lec.3)
 ➢ Scale length:
 $$ l = \frac{\varepsilon_{Si}}{\varepsilon_{ox}} t_{ox} t_{Si} $$
 Reduce Si body thickness \rightarrow Reduce BOX thickness

• Quantum confinement effect: (Lec.4)
 ➢ Electrons show smaller T_{inv} than holes.

• Sub-bands (Lec.4,5)
 ➢ Electrons: the lowest sub-bands from Δ_2 valleys.
 ➢ Holes: the lowest sub-bands from HHs.

• Carrier mobility: (Lec.5)
 ➢ Electron’s mobility is 3 times the hole’s.
FinFET

conventional devices are (110)/<110>

- **Solutions to reduce** I_{OFF} *(Lec.3)*
 - scale length:
 $$ l = \sqrt{\frac{\varepsilon_{Si}}{2\varepsilon_{ox}W_{Fin}}} t_{ox} $$

- **Quantum confinement effect**: *(Lec.5)*
 - Holes show smaller T_{inv} than electrons.

- **Sub-bands** *(Lec.5)*
 - Electrons: the lowest sub-bands from Δ_4 valleys.
 - Holes: the lowest sub-bands from HHs, w/ smaller m^* than (100).

- **Carrier mobility**: *(Lec.5)*
 - E_{eff} is largely reduced compared to single gate FET.
 - Electron’s mobility is comparable to hole’s.
 - (100) N-FinFET (w/ 45° rotated layout) doesn’t show performance advantage over (110) N-FinFETs (w/ conventional layout direction).
Short-Channel MOSFET General

- **Gate-Induced Drain Leakage (GIDL)** (Lec.2, 3)
 - Limiting the I_{OFF} to above 10pA/um.
 - Insensitive to L_g, sensitive to L_{overlap}.
 - Sensitive to S/D junction doping steepness; FinFET should show better GIDL than planar bulk MOSFET w/ high channel doping.

- **Reverse Narrow Width Effect**: (Lec.2)
 - Good to enhance electrostatics, by the quasi-planar gate control.

- **Apparent Mobility** (Lec.5)
 - Degrades with L_g scaling, due to gate or S/D edge defects.
 - The limiting velocities in Si MOSFET would still be saturation/drift velocities.

- **Series Resistance** (Lec.5)
High-κ Gate Dielectrics

• Extra Scattering Mechanisms (Lec.4, 5)
 ➢ Remote coulomb scatterings will be enhanced for thin-body MOSFETs.
 ➢ Remote phonon scatterings can be mitigated by using metal gate, and are no longer important in future CMOS technologies.

• EOT and EOT_{elec} (Lec.4)

Semiconductor Band Structure Theories

• Qualitative understanding: (Lec.4)
 ➢ Effective mass: quantum-confinement and transport masses
 ➢ Scattering types: (in-)elastic and intra-/inter-valleys
 ➢ Scattering mechanisms: phonon, surface roughness, coulomb
 ➢ Velocity saturation in Si is due to enhanced optical phonon emissions.