derivation of beam bending equation

new segment length ds
$$ds = \frac{dx}{\cos \theta}$$

slope of $w(x)$
$$\frac{dw}{dx} = \tan \theta$$

radius of curvature ρ
$$ds = \rho d\theta$$

small angle approximation
$$ds \approx dx$$

$w(x)$ – neutral axis as a function of position along the original beam x
derivation of beam bending equation

\[\frac{d^2 w}{dx^2} = -\frac{M}{EI} \]
\[\frac{d^3 w}{dx^3} = -\frac{V}{EI} \]
\[\frac{d^4 w}{dx^4} = \frac{q}{EI} \]

internal bending moment \(M \)
point shear force \(V \)
distributed load \(q \)

\[\theta \approx \frac{dw}{dx} \]
\[\frac{d\theta}{dx} \approx \frac{1}{\rho} \]

substitute
\[\frac{1}{\rho} = \frac{d^2 w}{dx^2} \]
\[\frac{d^4 w}{dx^4} = \frac{q}{EI} \quad \text{how to solve?} \]

- Laplace or Fourier transforms
- eigenfunction expansion
- **guess and check**

\[w = A + Bx + Cx^2 + Dx^3 + Ex^4 \quad \text{trial solution} \]

\[\frac{dw}{dx} = B + 2Cx + 3Dx^2 + 4Ex^3 \]

\[\frac{d^2 w}{dx^2} = 2C + 6Dx + 12Ex^2 \quad \text{boundary conditions} \]

\[\frac{d^3 w}{dx^3} = 6D + 24Ex \]

\[\frac{d^4 w}{dx^4} = 24E \]
\[\rho = \frac{EI}{W} \]

\[I = \frac{\rho W}{E} \]