Required Reading
(1) EE143 Lecture Notes
(2) Visit the Device Visualization website http://jas.eng.buffalo.edu/
Start with http://jas.eng.buffalo.edu/education/mos/mosCap/biasBand10.html
(a) Run all four simulation of the MOS capacitors (set Qox=0 first and then see effect of Qox later.
(b) Run all three MOSFET simulations on http://jas.eng.buffalo.edu/education/mos/mosfet/mosfet.html
(3) Section of Streetman Chapter 8 on MOS (in Bspace Resources Directory)

Problem 1 Simple threshold voltage calculations
(a) Calculate the threshold voltage of an NMOS transistor when the p-substrate concentration is 2×10^{16} cm$^{-3}$, n+ poly-Si is used as the gate material, and a gate oxide thickness of 90nm. Assume there is no body bias and no oxide charges.
(b) Repeat part (a) for a PMOS transistor with n-substrate concentration $= 2 \times 10^{16}$ cm$^{-3}$. Gate material and oxide thickness are the same.

Problem 2 Threshold voltage calculation with Oxide Interface Charge and Threshold Implant
(a) Poly-Si gate (n$^+$) NMOS devices are fabricated with 5×10^{15}/cm3 boron-doped substrate. Assuming the Si/SiO$_2$ interface charge Q_f to be $+3 \times 10^{10}$q cm$^{-2}$, find the required gate oxide thickness for $V_T = +1.0$ volt.
(b) Phosphorus is implanted through the gate oxide of the NMOS device described in part (a) such that all implanted phosphorus are inside the Si and are localized at Si-SiO$_2$ interface as a delta-function. Find the implantation dose required to make $V_T = -2$ volts.

Problem 3 Threshold implant for CMOS
A p-well CMOS process uses n$^+$ poly as the gate material for both the n and p channel devices. The gate oxide thickness is 22nm with no oxide or interface charge. The n-substrate has a doping concentration of 10^{16}/cm3 and the p-well has a doping concentration of 2×10^{16}/cm3 near the surface region.

A blanket threshold implant step is performed for both the n and p channel devices (same specie, same dose). Our design goal is to make $V_{TN} = - V_{TP}$ after the implant. Determine the implant dopant specie AND the required implant dose.
Problem 4 Simple MOSFET I-V Analysis

The I_D versus V_G curves for a n-channel enhancement-mode MOSFET with a small fixed V_{DS} (=50 mV) are shown below. The transistor channel length is 10 \(\mu \)m and the channel width is 100 \(\mu \)m, with a gate oxide thickness of 1000 Å.

![Image of ID vs VG curves](image)

(a) Find the threshold voltages for (i) $V_B=0$ and (ii) $V_B=-2V$.
(b) Find the substrate doping concentration (assume the substrate is uniformly doped).
(c) Find the carrier mobility in the channel.
(d) Find I_{DSat} of the transistor for $V_B=0$ and $V_G=5V$.

Problem 5 C-V Analysis

Experimental MOS data of C / C_{ox} versus V_G are given below. It is known that the oxide thickness is 260 nm, the SiO$_2$-Si interface charge $Q_{f}= +3.6 \times 10^{11} \text{q/cm}^2$.

(a) Calculate the maximum depletion layer thickness, x_{dmax}
(b) Estimate the substrate doping concentration N_a (ANSWER REQUIRES ITERATION)
(c) Calculate the work function of the gate material.

![Image of C/Cox vs VG](image)

Problem 6 MOS Narrow Width Effect

For identical channel widths W, discuss which one of the following three oxide isolation schemes will exhibit the most narrow width effect: (a) oxide window, (b) LOCOS and (c) shallow trench oxide isolation. Illustrate your answer with sketches or a few sentences. [Note: the cross-sections are along the channel width direction, NOT the channel length direction]
Problem 7 Past exam question

The following cross-section shows a NMOS transistor with **n+ poly-Si gate**, gate oxide thickness = 20nm, and a p-substrate with doping concentration = 1E16/cm³.

(a) Thermal SiO2 will have electrical breakdown when the electric field is $> 8 \times 10^6$ V/cm. What is the **maximum** V_G that can be applied without causing gate oxide breakdown?

(b) If there is no oxide or oxide interface charge, calculate the threshold voltage V_T for $V_D = 0$.

(c) Calculate the thickness of the depletion region (x_{dmax}) underneath the gate oxide when $V_G = V_T$, with $V_D = 0$.

(d) Calculate the drain current for $V_G = V_D = 5$ volts. Use $k = 50 \, \mu A / V^2$.

 Note: $I_{DS} \ (\text{triode region}) = k \left[(V_G-V_T) \ V_{DS} - V_{DS}^2/2 \right] ; \ I_{DS} \ (\text{saturation region}) = k \left[(V_G-V_T)^2/2 \right]$

(e) If a boron threshold implant is performed with a dose of $10^{12}/cm^2$. What is the new threshold voltage of the transistor. [You can assume the boron implant concentration profile is a delta function located exactly at the Si/SiO2 interface].

(f) What is the drain current for $V_G = V_D = 5$ volts for the MOSFET with the boron threshold implant described in part (e)?

(g) A small-signal C-V measurement across the gate and substrate terminals is performed with the MOSFET structure. V_D is grounded to zero voltage. Sketch qualitatively the C versus V_G curve from $-10V$ to $+10V$.

(h) Calculate the maximum C value (in F/cm²) and the minimum C value (in F/cm²).