Section 3: Etching

Jaeger Chapter 2
Reader

Etch Process - Figures of Merit

• Etch rate
• Etch rate uniformity
• Selectivity
• Anisotropy
Bias and anisotropy

Bias $B \equiv d_f - d_m$

Complete Isotropic Etching
Vertical Etching = Lateral Etching Rate
$B = 2 \times h_f$

Complete Anisotropic Etching
Lateral Etching rate = 0
$B = 0$

Degree of Anisotropy

r_{lat}: lateral etch rate
r_{ver}: vertical etch rate
A_f: degree of isotropy

$$A_f \equiv 1 - \frac{r_{\text{lat}}}{r_{\text{ver}}}$$

$$0 \leq A_f \leq 1$$

EE143 – Ali Javey
Etching Selectivity S

\[S_{AB} = \frac{r_A \text{ (vertical etching velocity of material A)}}{r_B \text{ (vertical etching velocity of material B)}} \]

Wet Etching
S is controlled by:
chemicals, concentration, temperature

RIE
S is controlled by:
plasma parameters, plasma chemistry,
gas pressure, flow rate & temperature.

Selectivity Example

<table>
<thead>
<tr>
<th></th>
<th>SiO₂</th>
<th>Si</th>
</tr>
</thead>
</table>

SiO₂/Si etched by HF solution

\[S_{\text{SiO}_2, \text{Si}} \text{ Selectivity is very large (~ infinity)} \]

SiO₂/Si etched by RIE (e.g. CF₄ plasma)

\[S_{\text{SiO}_2, \text{Si}} \text{ Selectivity is finite (~ 10)} \]
Uniformity

(a) Film thickness variation across wafer

\[h_{f_{\text{max}}} = h_f \cdot (1 + \delta) \]

Nominal thickness

Thickness variation factor

The variation factor \(\delta \) is dictated by the deposition method, deposition equipment, and manufacturing practice.

(b) Film etching rate variation

\[r_{f_{\text{min}}} = r_f \left(1 - \phi_f\right) \]

variation factor

Worst-case etching time required to etch the film

\[\frac{h_{f_{\text{max}}}}{r_{f_{\text{min}}}} = \frac{h_f}{r_f} \cdot \frac{1 + \delta}{1 - \phi_f} \]

Wet Etching

1. Reactant transport to surface
2. Selective and controlled reaction of etchant with the film to be etched
3. Transport of by-products away from surface
Wet Etching (cont.)

- Wet etch processes are generally isotropic.
- Etch rate is governed by temperature, concentration, chemicals, etc.
- Wet etch processes can be highly selective.
- Acids are commonly used for etching:
 \[
 \begin{align*}
 \text{HNO}_3 & \rightleftharpoons \text{H}^+ + \text{NO}_3^- \\
 \text{HF} & \rightleftharpoons \text{H}^+ + \text{F}^-
 \end{align*}
 \]

 \(\text{H}^+\) is a strong oxidizing agent

 \(\Rightarrow\) high reactivity of acids

Wet Etch Processes

1. Silicon Dioxide

To etch SiO\(_2\) film on Si, use

\[
\text{HF} + \text{H}_2\text{O}
\]

\[
\text{SiO}_2 + 6\text{HF} \rightarrow \text{H}_2 + \text{SiF}_6 + 2\text{H}_2\text{O}
\]

Note: HF is usually buffered with \(\text{NH}_4\text{F}\) to maintain \([\text{H}^+]\) at a constant level (for constant etch rate). This HF buffer is called Buffered Oxide Etch (BOE)

\[
\text{NH}_4\text{F} \rightarrow \text{NH}_3 + \text{HF}
\]
(2) Silicon Nitride

To etch Si₃N₄ film on SiO₂, use

H₃PO₄

(phosphoric acid)

(180°C: ~100 A/min etch rate)

Typical selectivities:
- 10:1 for nitride over oxide
- 30:1 for nitride over Si

(3) Aluminum

To etch Al film on Si or SiO₂, use

H₃PO₄ + CH₃COOH + HNO₃ + H₂O

(phosphoric acid) (acetic acid) (nitric acid)

(~30°C)

\[6H^+ + 2Al \rightarrow 3H_2 + 2Al^{3+} \]

(Al³⁺ is water-soluble)
Wet Etch Processes (cont.)

(4) Silicon

(i) Isotropic etching

Use HF + HNO₃ + H₂O

\[3\text{Si} + 4\text{HNO}_3 \rightarrow 3\text{SiO}_2 + 4\text{NO} + 2\text{H}_2\text{O} \]

\[3\text{SiO}_2 + 18\text{HF} \rightarrow 3\text{H}_2\text{SiF}_6 + 6\text{H}_2\text{O} \]

(ii) Anisotropic etching (e.g. KOH, EDP) for single crystalline Si

Drawbacks of Wet Etching

- Lack of anisotropy
- Poor process control
- Excessive particulate contamination

=> Wet etching used for noncritical feature sizes
Reactive Ion Etching (RIE)

- Plasma generates (1) Ions
- (2) Activated neutrals

Enhance chemical reaction

Remote Plasma Reactors

Plasma Sources

1. Transformer Coupled Plasma (TCP)
2. Electron Cyclotron Resonance (ECR)

- e.g. quartz coils
- wafers
- Pressure $pump 1\text{mTorr} \rightarrow 10\text{mTorr}$
- bias $\sim \leq 1\text{kV}$
RIE Etching Sequence

1. Diffusion of reactant
2. Diffusion of by product desorption
3. Chemical reaction
4. Gaseous by products
5. Gas flow

Substrate

Volutility of Etching Product

* Higher vapor pressure \Rightarrow higher volatility

- $e.g.$ $Si + 4F^* \rightarrow SiF_4 \uparrow$ (high vapor pressure)
- $e.g.$ $Cu + Cl \rightarrow CuCl (low vapor pressure)$

Example

Difficult to RIE Al-Cu alloy with high Cu content
Examples

For etching Si

\[CF_4 + e \leftrightarrow CF_3^+ + F^* + 2e \]

\[Si + 4F^* \rightarrow SiF_4 \uparrow \]

F* are Fluorine radicals (highly reactive, but neutral)

Aluminum

\[CCl_4 + e \leftrightarrow CCl_3^+ + Cl^- + 2e \]

\[Al + 3Cl^- \rightarrow AlCl_3 \uparrow \]

Photoresist

\[C_xH_yO_z + O_2 \rightarrow CO_x \]

\[HO_x \]

How to Control Anisotropy?

1) ionic bombardment to damage expose surface.
2) sidewall coating by inhibitor prevents sidewall etching.
How to Control Selectivity?

E.g. \(\text{SiO}_2 \) etching in \(\text{CF}_4 + \text{H}_2 \) plasma

\[
S = \frac{\text{Rate SiO}_2}{\text{Rate Si}}
\]

Reason:

\[
F^* + H \rightarrow HF \quad \therefore \quad \text{F}^* \text{ content} \downarrow
\]

\[
\therefore \quad \text{SiF}_4 \downarrow
\]

Example: Si etching in CF4+O2 mixture

Reason:

1. \(O + \text{CF}_x \rightarrow \text{COF}_x + F^* \)

 \(F^* \) increases \(\text{Si etching rate} \)

2. \(\text{Si} + \text{O}_2 \rightarrow \text{SiO}_2 \quad \therefore \text{rate} \downarrow \)

EE143 – Ali Javey
Example: RIE of Aluminum Lines

* It is a three-step sequence:
1) Remove native oxide with BCl₃
2) Etch Al with Cl-based plasma
3) Protect fresh Al surface with thin oxidation

1. Remove native oxide with BCl₃
2. Cl₂-based RIE
3. Form oxide again (gently)