Lecture 19: Compensation

- Announcements:
 - HW#9 online
 - Lab#2 due this Friday
 - Grade depends heavily on the report
 - Make sure you spend enough effort on the report per your TA's requirements
 - Lab#3 update online (update for 240A folks)
 - No lecture next Tuesday; this lecture is 2 hours to compensate
 - Two lectures after next Tuesday also 2 hours

- Lecture Topics:
 - Compensation

- Last Time:

 Stability + Compensation

When does instability come from? Practical:
- Anytime FB becomes unstable under certain conditions → must compensate to suppress instability!

Ex: Non-Inverting Amplifier

\[V_o \approx a(s) V_i \]
\[V_e = V_i \cdot V_f \]
\[V_f \cdot f V_o \]

\[A(s) = \frac{V_o}{V_i}(s) = \frac{a(s)}{1 + a(s) f} = \frac{a(s)}{1 + T(s)} \]

Closed loop gain

Loop transmission: \[T(s) \approx a(s) f \]

Instability occurs when \[A(s) \rightarrow \infty \]

⇒ \[A(s) \frac{GCD}{1 + a(s) f} \rightarrow A \rightarrow \frac{a(s)}{1 - 1} \rightarrow \infty \]

Will also go unstable if denominator is (s)
In general:

If \(|a(s)f| > 1\) when \(\alpha(s)f = -180^\circ\), \(\Rightarrow\) Instability.

This is a simplified form of the Nyquist Criterion.

Stability of a FB Ckt. Using a Single-Pole OpAmp:

For a single pole OpAmp: \(a(s) = \frac{a_0}{1 - \frac{s}{p}}\),

Thus: closed loop T.F.

\[A(s) = \frac{a(s)}{1+a(s)f} = \frac{a_0}{1 + \frac{s}{p(1+a(s)f)}} \]

\(A_0\): closed loop deg of \(\times\) (1+a(s)f) smaller than \(a_0\).

To: \(a(s)f\) - loop gain (defined @ dc)

\(T(s)\), \(a(s)f\) - loop transmission (defined for general frequencies).

Bode Plot: use to determine:
- \(\alpha(s)f\) when \(\alpha(s)f = 1\)
- then can determine stability.

\[A(s) = \frac{V_a(s)}{V_o(s)} = \frac{a_0}{1 + a(s)f} \]

\(20\log(A(s)) = 20\log(a(s)f)\)

Original open loop op amp T.F.

\[20\log(A(s)) \approx 20\log(a(s)f) \]

Closed loop T.F.

\[20\log(a(s)f) \approx 20\log(a(s)f) \]

This is stable!
Remarks:

1. For the case of a single-pole op amp, FB cannot ever reach $\angle a(j\omega) = -180^\circ$. (90° is the limit.)

2. Thus, a single-pole op amp in FB with $f = \text{const.}$, i.e., f is a function of ω, is always stable!

But in reality, op amp also has non-dominant poles! Therefore can get $\angle a(j\omega)
\neq -180^\circ$

Con mitigate instability.

Use again a Bode plot to investigate.

Stability of a FB Ckt. Using a mul:

Acme: dominant pole: p_1, non-dominant pole: p_2

$|P_1 P_2| > |P_2|$
For the more general case where \(A(s) \) has multiple poles:

- \(A(s) \) has the same additional poles (i.e., \(\text{pfreq} \))

 \[A(s) \approx \frac{A_0}{\left(1 - \frac{s}{\text{pfreq}}\right)\left(1 - \frac{s}{\text{p1}}\right)\left(1 - \frac{s}{\text{p2}}\right)} \]

 - But can also get peaking

Definitions:

- \(\text{Phase Margin} = 180^\circ + (\angle A(j\omega))_{\text{pfreq}, \text{omega}} (\left| A(j\omega) \right| = 1) \)
 - \(180^\circ - 160^\circ = 20^\circ \)
 - \(180^\circ - 100^\circ = 80^\circ \)

 - \(\text{Phase margin must be} > 0^\circ \) for stability
 - For stability: \(\text{Phase Margin} > 0^\circ \)

 - In design safety, design for \(\text{Phase Margin} \geq 45^\circ \)

 - Even safer (for settling time): \(\text{PM} \geq 60^\circ \)

Can see this peaking on a root-locus analysis.

As the PM continues to shrink, the peak grows.

- When the peak gets sufficiently large, the circuit will oscillate at its freq. \(\rightarrow \) Instability!
Definition:

Gain Margin = \[10 \log |a(j\omega)| \text{ in dB} \text{ @ freq. where } \arg(a(j\omega)) = -180^\circ \]

For stability: Gain Margin < 0 dB

Compensation of Op Amps:

To compensate, need distance between \(p_1 \) \(p_2 \) to be large enough to encompass the largest desired loop gain. \(\delta_{\text{max}} = \text{Tomax} \)

\[|a(j\omega)| \text{ (dB)} \]

Two Ways to Compensate:

1. Narrowbanding
2. Pole Splitting

\[20 \log \left(\frac{p_2'}{p_1'} \right) = -20 \log \text{Tomax} \]

\[20 \log \left(\frac{p_2'}{p_1'} \right) = -20 \log \text{Tomax} \]

\[\frac{p_2'}{p_1'} \geq \text{Tomax} \]

\[\frac{p_2'}{p_1'} \geq \text{Tomax} \]

\[\text{for } \phi = 45^\circ \]

\[A_0 = \frac{R_2}{R_1} \]

\[\text{smaller closed loop gain intended} \]
Narrowbanding

- Introduce a pole \(p_b \) so that there is sufficient separation between \(p_0 + p_i \), which becomes the dominant pole.

\[|P_0| \quad \text{la}(\omega) [\text{dB}] \]

- New \(P_2 \)
- \(|P_{\text{new}}| \quad \text{la}(\omega) [\text{dB}] \)

- \(|P_{\text{new}}| \quad \text{log}(\omega) \)
- \(\angle \text{a}(\omega) \quad \text{log}(\omega) \)

- \(\angle \text{a}(\omega) = \pm 170^\circ \)
- \(\angle \text{a}(\omega) = \pm 45^\circ \)

Remember Narrowbanding:

1. Assumption: \(P_1, P_2, P_3 \) don't move when \(p_b \) is introduced (often not true, but that's not that bad)
2. Summarize: choose \(p_b \) such that \(|\text{la}(\omega)| = 0 \text{dB} \approx 1 \text{st} \), which becomes the new dominant pole.

\(\pm \text{this gives } \text{PM} = 45^\circ \) (for \(|P_{\text{new}}| > |P_1| \) \& \(|P_3| > |P_2| \))

3. Why do this? Wouldn't it be much better to just move the original \(P_1 \) (i.e., pole-splitting)?

5. Do it when you have no other choice, e.g., when you have a packaged op amp & have access only to a few terminals, not the optimum compensation node.

4. \[|P_{\text{new}}| = \frac{|P_1|}{\text{Tomax}} \text{ maximum expected/needed loop gain} \]

Problem:

1. Often, \(|P_{\text{new}}| < |P_1| \); \(f_{3 \text{dB}} \) & phase will be very weak

2. \(\text{Wandering} = |P_1| \), which isn't that bad

Solution: Pole-Splitting

- Move \(P_1 \) down & \(P_2 \) up simultaneously.

\(\omega_{3 \text{dB}} = |P_1| \) \quad \omega_{\text{wandering}} = |P_{\text{new}}|
Pole-Splitting

\[|a(j \omega)| \text{ [dB]} \]

- At some \(p_2 \) does not move
- \(p_1 \) moves down to the line

For any \(\omega \) in this range it's stable.

\(\Delta a(j \omega) \)

- \(C \) defines the maximum loop gain that is stable
- \(\Delta \omega \) is unstable
- \(\Delta \omega \) is unstable
- \(\Delta \omega \) is unstable

For pole-splitting, \(|p_1| = \frac{1}{p_{max}} \)

Unity Gain Stable Op Amps

- \(\text{Ex: } 741 \text{ op amp} \)
- Monolithically compensated w/ an internal \(C_c \)
- To be stable when \(A_0 = 1 \) (closed loop gain)

\[|a(j \omega)| \text{ [dB]} \]

- Open-loop und \(C_c \)
- \(20 \log(A_0) \)
- \(20 \log(5) \)

Loss of BW for \(\text{gain} A_0 < 5 \)

What if this were the lowest gain you needed?
- \(\omega_{-3dB} \) would be this

Could have done this if compensated for the needed \(A_0 = 5 \rightarrow \omega_{-3dB} \)

Higher \(\omega \) if compensate for \(A_0 \), rather than for unity gain.