Lecture 11: Current Source Matching & Temperature Independent Biasing

- Announcements:
 - Lab#2 online: starts this week
 - 240A HW#1A online soon

- Lecture Topics:
 - High Swing Current Sources (cont.)
 - Current Source Matching Considerations
 - Temperature Independent Biasing (quick)

- Last Time:
 - Problem: Body effect M_4, M_6, M_2 increases from V_T's

\[
(V_T - V_{gs4}) + (V_T - V_{gs4}) + V_{off} \leq V_{ov}
\]

BIG PROBLEM!

Solutions:

1. Tie the wells of M_4, M_6, M_2 to their sources.
 - $V_T = V_{to} + 2V_{gs4} = V_{to}$
 - But don't want to do this due to too much area consumed → cost ↑

2. Bias M_4 so that $V_{gs4} = V_T + 2V_{ov}$
 - $\Rightarrow V_{gs4} = V_T + 3V_{ov}$
 - \[\left(\frac{W}{L} \right)_{M_4} = \frac{1}{3} \left(\frac{W}{L} \right)_{M_2} \]
 - safely margin!

 \[V_{min} = 3V_{ov} \]

 Not optimum, but safe → M_4, stay in saturation
EE 140: Analog Integrated Circuits

Lecture 11w: Current Source Matching & Temperature Independent Biasing

Solution: Use an alternative bias scheme.

Alternate Biasing Scheme for Cascode

\[
I_{DAC} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) (V_{GS1} - V_{t}) (1 + \lambda V_{DS1})
\]

If \(V_{DS1} \neq V_{DS3} \)

\[
I_{O} = \frac{(1 + \lambda V_{DS1}) I_{REF}}{1 + \lambda V_{DS3}} \rightarrow I_{O} \neq I_{REF}
\]

\[
V_{DS1} = V_{DS3} \rightarrow I_{O} = I_{REF}
\]

Note: Still must worry about Body effect!

Design defensively

\[
V_{GS1} > V_{t} + 2V_{OV}
\]
Current Source Matching Considerations

In MOS, we often need matched current sources:

\[I_{01} = I_{02} \]
\[I_{01} = \frac{1}{2} \mu n C_{ox} \left(\frac{W}{L} \right) (V_{GS1}-V_{t})^2 \]
\[I_{02} = \frac{1}{2} \mu n C_{ox} \left(\frac{W}{L} \right) (V_{GS2}-V_{t})^2 \]

These won't be perfectly matched if

\[\frac{W_{L1}}{W_{L2}} \neq \frac{V_{t1}}{V_{t2}} \]

We always have this due to finite fabrication tolerances.

Need to quantify their impact — how much mismatch in \(I_{01} \) \(I_{02} \) are caused by

Define average & mismatch quantities:

\[\text{Average} \]
\[I_{D} = \frac{1}{2} [I_{D1} + I_{D2}] \]
\[\Delta I_{D} = I_{D1} - I_{D2} \]
\[\frac{W}{L} = \frac{1}{2} \left[\frac{W_{L1}}{W_{L2}} + \frac{W_{L2}}{W_{L1}} \right] \]
\[\Delta V_{t} = V_{t1} - V_{t2} \]
\[V_{t} = \frac{1}{2} [V_{t1} + V_{t2}] \]

\[\frac{\Delta I_{D}}{I_{D}} \approx \text{fractional current mismatch} \]
\[\frac{\Delta (W/L)}{(W/L)} \approx \frac{V_{t1}}{V_{t2}} \]

Re-arranging:

\[I_{D1} = I_{D} + \frac{\Delta I_{D}}{2} \]
\[\frac{W_{L1}}{W_{L2}} = \frac{(W_{L2})}{(W_{L1})} - \frac{\Delta (W/L)}{2} \]

\[\frac{V_{t1}}{V_{t2}} = \frac{V_{t} + \Delta V_{t}}{2} \]

\[\frac{V_{t1}}{V_{t2}} = \frac{V_{t} - \Delta V_{t}}{2} \]
Plug those into the current equation:

\[I_D = \frac{I_D^0 + \frac{\Delta I_D}{2}}{} \]

\[= \frac{1}{2} \mu_n C_X \left(\frac{W}{L} + \frac{\Delta(V_{GS})}{2} \right) \left[V_{GS} - V_T - \frac{\Delta(V_T)}{2} \right]^2 \]

\[= \frac{1}{2} \mu_n C_X \left(\frac{W}{L} + \frac{\Delta(V_{GS})}{2} \right) \left[V_{GS} - V_T + \frac{\Delta(V_T)}{4} \right] \]

\[= \frac{1}{2} \mu_n C_X \left(\frac{W}{L} + \frac{\Delta(V_{GS})}{2} \right) \left[V_{GS} - V_T \right] \]

\[I_D^0 = \frac{I_D}{2} \mu_n C_X \left(\frac{W}{L} \right) \frac{V_{GS}}{2} \left(\frac{\Delta(V_{GS})}{2} \right) \]

\[\frac{\Delta I_D}{I_D} = \frac{\Delta(V_{GS})}{(W/L)} - \frac{\Delta(V_T)}{(W/L)} \]

\[\Delta I_D = \frac{\Delta I_D}{I_D} \times I_D \]

\[V_{OV1} \rightarrow \minimize this component \]

\[V_{DD} \rightarrow V_{OV1} \rightarrow \Delta I_D \uparrow \times \]

\[\rightarrow \text{to combat } (W/L) \uparrow \rightarrow \Delta I_D \uparrow \]

\[\text{Chip Size Trends for Future:} \]

\[\text{1990's} \quad \text{Digital} \]

\[\text{2010} \quad \text{OOG} \quad \text{Ctrl.} \]

\[\text{1990's} \quad \text{Analog} \]

\[\text{2010} \quad \text{Analog} \]

\[\text{chip area reduces} \]

\[\text{smaller, but must keep Vdd small} \]

\[\text{chip area remains same!} \]
VBE-Referenced Biasing

\[V_{cc} - V_{BE} = I_0 \frac{V_{BE1}}{R_2} = V_{T} \ln \left(\frac{I_{ref}}{I_{s1}} \right) \]

\[I_{ref} = \frac{V_{T}}{R_2} \ln \left(\frac{I_{ref}}{I_{s1}} \right) \]

\[I_{ref} = \frac{V_{T}}{R_2} \ln \left(\frac{1}{\frac{\partial I_{ref}}{\partial V_{cc}}} \right) \]

\[\sum I_{ref} = \frac{V_{cc}}{V_{T}} \frac{\partial I_{ref}}{\partial V_{cc}} \]

\[\frac{\partial I_{ref}}{\partial V_{cc}} = \frac{V_{cc}}{V_{T}} \frac{1}{\ln \left(\frac{1}{\frac{\partial I_{ref}}{\partial V_{cc}}} \right)} \]

Problem: \(I_{ref} \) still dependent on \(V_{cc} \)

\[S_{V_{cc}} = \frac{1}{\ln(I_{ref}/I_{s1})} \left[\frac{\partial V_{cc}}{\partial V_{cc}} \right] = \frac{1}{\ln(I_{ref}/I_{s1})} \]

If we can eliminate this '1',

then \(S_{V_{cc}} = 0 \) — need to eliminate \(I_{ref} \) dependence on \(V_{cc} \)

Solution:

Graphically:

- Use self-biasing
- Graphical representation of the circuit
- Need to bootstrap out of this point
- If must satisfy both curves, then the circuit must operate here
- \(I_{ref}(\alpha V_{cc}) \)

npn current source

Finishes \(R_2 \) which makes this finite.

This is pretty darn good!

\[S_{V_{cc}} = 0 \]
Determine Temperature Dependence of the VBE Reference

Definition. Fractional Temperature Coefficient
\[TC_f = \frac{1}{I_0} \frac{\partial I_0}{\partial T} \text{ temperature} \]
For \(I_0 = \frac{V_{BE}}{R} \):
\[TC_f = \frac{1}{I_0} \frac{\partial I_0}{\partial T} = \frac{R}{V_{BE}} \left(\frac{1}{R} \frac{\partial V_{BE}}{\partial T} - \frac{V_{BE}}{R^2} \frac{\partial R}{\partial T} \right) \]
\[TC_f \approx -1 \frac{\partial V_{BE}}{\partial T} + \frac{1}{R} \frac{\partial R}{\partial T} \]
Some Typical TC_f's:
- Diffused R's ~ 1000 - 1500 ppm/°C
- Poly Si R's ~ 500 ppm/°C
- V_{BE} ~ 2300 ppm/°C
\[TC_f \sim -3200 - 1000 \approx -3300
\]
\[= -4200 \text{ ppm/°C} \sim 0.437 \% /°C \]
\[0 \rightarrow 70^°C: \sim 25\% I_0 \text{ variation} \]
\[-55 \rightarrow 125^°C: \sim 60 - 70 \% I_0 \text{ variation} \]
Not so good!

\[I_0 \] Referenced Bias Circa:

Based on the Wiener current source:
\[\frac{I_0}{V_{cc}} = \frac{1}{R_1} + \frac{1}{R_2} \]
Here, \(I_{ref} \neq I_0 \)
So sensitive to \(V_{cc} \) variations
But can fix this by setting \(I_{ref} = I_0 \)
Use self-biasing:

\[V_{cc} \]

Just use mismatches to make \(N_x \) device?
Assuming $I_{rz} = N I_{r1}$:

KVL: $I_0 R + V_{BE} - V_{BE2} = V_T \ln N$

$I_0 = \frac{V_T}{R} \ln N = \frac{kT}{q}$ (const.)

I_{zf}:

Two possible operating pts.

\Rightarrow we start-up circuit to guarantee this one (where we have very small S_{Vcc})

$\frac{kT}{2}$ Reference Temperature Dependence

$T_{Cf} = \frac{\partial I_0}{\partial T} = \frac{\partial}{\partial T} \left(\frac{q}{kT} \right) \frac{R}{V_T} \ln N$

$\therefore T_{Cf} = \frac{V_T}{kT} - \frac{\partial R}{\partial T}$

$\approx T_{Cf}^k T_{Cf}^e \sim 1500 \text{ ppm/}^\circ C$

Better than V_{BE}-Ref, but still not zero...

How can get \sim?

Bandgap Reference

Basic Idea:

$V_{BE} \rightarrow$ neg. T_{Cf}

$\frac{kT}{q} \rightarrow$ pos. T_{Cf}

Add together to cancel \rightarrow get $T_{Cf} = 0$!

0th Order Picture:

Choose k to get $T_{Cf} = 0$.

What should k be? (0th Order Picture)

\Rightarrow get ballpark estimate

→ over
Bandgap voltage obtained via a linear extrapolation to 0K. (Not the same as what one usually sees in physics)

\[\frac{kT}{q} \]

\[\approx 26\text{mV} \]

\[0.1\text{mV/}^\circ\text{C} \]

\[1.205\text{V} \]

\[V_{BE} \]

\[V_{GO} \]

\[300K \]

\[OK \]

[Ok Order]
There will actually be some curvature

So will only get this @ one temperature