Lecture 1: Admin & Overview

- Announcements:
 - EE 140: Analog Integrated Circuits
 - Instructor: Prof. Clark T.-C. Nguyen
 - Webcast: wireless mic
 - Office Hour Changes?:
 - No changes requested
 - For the course website, just google ee140
 - The website should be up and running in a couple of days
 - I will be traveling this coming Thursday and next week on Tuesday
 - TA’s will lecture on these days; it’s review material
 - I will be out of town, so will not be able to hold office hours thru Wednesday, next week
 - Discussion sections start next week
 - Lecture Topics:
 - Review
 - Ideal Op Amps
 - Non-Ideal Op Amps
 - Op Amp Examples
 - Go through
 - Course information sheet
 - Syllabus
 - Grading Information and Policy
 - Class account sheets handed out in class

Review of Op Amps

Ideal Op Amps:

\[V_+ = V_- \]

Properties of Ideal Op Amps:

1. \(R_o = 0 \) — can drive any load with no problems
2. Infinite freq. response
3. \(A = \infty \) \(\Rightarrow V_+ = V_- \), assuming that
4. \(R_x = \infty \) \(\Rightarrow i_+ = i_- = 0 \)

No FB must

\(V_o \) finite
① Verify that we have no FB.

For FB example.

② \[V_o = V_i \Delta T \rightarrow V_i = R_1 \Delta T \]

③ \[i_2 = 0 \quad \therefore i_1 = i_2 \]

\[i_1 = \frac{V_o - 0}{R_1} = \frac{V_i}{R_1} \]

\[V_o = 0 - 1 \times i_2 R_2 = -i_1 R_2 \]

\[V_o = -\left(\frac{V_i}{R_1}\right) R_2 = -\frac{R_2}{R_1} N_i \]

\[\therefore \frac{V_o}{N_i} = \frac{-R_2}{R_1} \]
Non-Ideal Op Amps:
- Actual op amps, of course, are not ideal; rather, they ...
 - Have finite gain, A_o
 - Have finite bandwidth, BW
 - Have finite input resistance, R_i
 - Have finite input capacitance, C_i
 - Have finite output resistance, R_o
 - Generates noise
 - Have input bias currents (because R_i is not infinite)
 - Have input offset currents and voltages
 - Have finite slew rate
 - Have finite output swing
- All of the above can be temperature dependent!
- A major objective of this class is understand what gives rise to the above non-idealities and to teach design strategies to get around them

- Then look at op amp usage examples using prepared pages