Inspection Analysis on a Multitransistor Ckt.

\[R_d = R_{T1} + \frac{1}{g_m} \quad r_{m} + r_{T2} = 2 r_{T1} \]

\[R_o = r_{o2} \left(1 + \frac{g_m}{g_{m1}} \right) \left\| R_{d2} \right\| \left(R_{o2} \right) \approx R_{o2} \]

Assume: Q1, Q2 identical

\[I_{C1} = I_{C2} = \frac{V_{EE}}{2} \quad r_{m1} = r_{T2} = r_{T1} \quad r_{o1} = r_{o2} = r_{o} \]

\[g_{m1} = g_{m2} = g_{m} \]

First, get DC operating pt.

\[I_{C} = \frac{1}{g_m} \quad R_{EE} = 10 k\Omega \]

\[I_{S} = I_{C} = \frac{1}{g_m} \quad V_{CC} = \frac{1}{g_m} \quad V_{EE} \]

\[I_{T1} = I_{T2} = \frac{1}{g_m} \quad V_{EE} \]

\[V_{S} = V_{EE} \]

\[V_{S} = V_{EE} \]

\[R_{S} = 1 k\Omega \]

Next, get AC operating pt.

\[g_{m1} = g_{m2} = g_{m} \]

\[s.s. ac ckt. \]

Inspection analysis might not work even there is feedback: e.g.,

\[R_{EE} = 10 k\Omega \]

\[I_{S} = 1 mA \]

\[I_{C} = \frac{1}{g_m} \quad R_{EE} \]

\[\frac{1}{g_m} \mid R_{EE} \mid 10 k\Omega \]

\[I_{C} = 1 mA \]

\[V_{EE} \]

\[V_{S} = V_{EE} \]

\[I_{S} = I_{C} = \frac{1}{g_m} \]

\[I_{T1} = I_{T2} = \frac{1}{g_m} \]

\[V_{EE} \]

\[I_{S} = I_{C} = \frac{1}{g_m} \]

\[V_{EE} \]

\[I_{S} = I_{C} = \frac{1}{g_m} \]

\[V_{EE} \]

\[I_{S} = I_{C} = \frac{1}{g_m} \]

\[V_{EE} \]

\[I_{S} = I_{C} = \frac{1}{g_m} \]

\[V_{EE} \]

\[I_{S} = I_{C} = \frac{1}{g_m} \]

\[V_{EE} \]
MOS Inspector Clue

- for now, ignore body effect (i.e., ignore g_{mB})
- use the same inspection formulas as bipolar, but use $\beta \to \infty$, $r_{\pi} \to 0$, $m \to \infty$

MOS Inspection Analysis

For Common-Source Common-Drain Cascade

$$\frac{V_{d}}{V_{o}} = -g_{m} R_{d}, \quad g_{m} = \frac{m}{1 + g_{m} R_{f}}$$

$$\frac{V_{s}}{V_{o}} = \frac{g_{m} R_{f}}{1 + g_{m} R_{f}} = \frac{R_{f}}{g_{m} + R_{f}}$$

$$N_{d} = -g_{m} R_{d}, \quad G_{m} = \frac{g_{m}}{1 + g_{m} R_{f}}$$

$$N_{s} = g_{m} R_{f} = \frac{R_{f}}{g_{m} + R_{f}}$$

$$R_{d} = R_{0} \left[1 + g_{m} R_{f} \right]$$

$$R_{S} = 0$$

$$R_{d} = \frac{1}{g_{m}} V_{R_{f}}$$

Copyright © 2009 Regents of the University of California
The image contains a circuit diagram and handwritten notes related to MOS Inspection Analysis. The notes include equations and comments. The key points are:

- The gain will be from 80-90% of what you calculate.
- The problem is with gmb in the source follower.
- Source Follower: (ω substituted grounded)
- Hybrid-II Model
- Vgs = Vgs + Vgs (–)
- Vce = Vce + Vce (–)
- Due to body effect

The diagram shows a circuit with various components labeled with symbols and equations.