Again, were mainly concerned how w1 phase margin; i.e., stability.

How does a RHP zero affect the PM?

- compare a LHP zero w/ a RHP zero:

1. LHP zero: (and 2 poles)

 \[H(s) = \frac{\sqrt{\omega^2 + \epsilon^2}}{\omega^2 + \epsilon^2} \]

 \[|H(j\omega)| = \frac{\sqrt{\omega^2 + \epsilon^2}}{\sqrt{\omega^2 + \epsilon^2}} \]

 \[\angle H(j\omega) = -\tan^{-1} \left(\frac{\omega}{\epsilon} \right) - \tan^{-1} \left(\frac{\epsilon}{\omega} \right) \]

 \[= -\tan^{-1} \left(\frac{\omega}{\epsilon} \right) - \tan^{-1} \left(\frac{\epsilon}{\omega} \right) \]

 Thus:

 - no gain
 - delta帮
 - This is adding phase - helping the PM!

 - unity gain freq. increased!
 - (good!)

 - very long unity gain PM!
 - (good!)

2. RHP zero: (and 2 poles)

 \[H(s) = \frac{\sqrt{\omega^2 + \epsilon^2}}{\omega^2 + \epsilon^2} \]

 \[|H(j\omega)| = \frac{\sqrt{\omega^2 + \epsilon^2}}{\sqrt{\omega^2 + \epsilon^2}} \]

 \[\angle H(j\omega) = -\tan^{-1} \left(\frac{\omega}{\epsilon} \right) - \tan^{-1} \left(\frac{\epsilon}{\omega} \right) \]

 \[= -\tan^{-1} \left(\frac{\omega}{\epsilon} \right) - \tan^{-1} \left(\frac{\epsilon}{\omega} \right) \]

 Thus:

 - unity gain freq. still extended
 - (bad! since the phase keeps going down!)

 - unity gain PM = (con) unstable!

 Problem:

 - to solve, must first understand where the zero comes from!