Lecture 2: Device Models I (Bipolar Review)

Announcements:
- The course website was up and running last week
 - Just google ee140 to get to it
- HW#1 online last week ... due next week
 - Wednesday, at 8 a.m., in the 140/240A box on 1st floor (near the TI lab)
- My Monday Office Hours updated to 2-3 p.m.

Lecture Topics:
- Review (fast)
 - Bipolar Junction Transistor Modeling
 - Basic Structure & Physics
 - Large Signal Models
 - DC Operating Point
 - Small Signal Models
 - Frequency Shaping Elements
 - Layout
 - Unity Gain Frequency
- Last Time: Reviewed op amps and started into BJT modeling using the module handout
- Continue with the handout

Simple Biasing Example

\[V_{cc} = 10V \]
\[V_{BB} = V_{cc}(R_2/R_1+R_2) \]
\[V_{BE} = 0.7V \]
\[V_{BE(a)} \]
\[V_{EB} = 0.7V \]
\[R_B = \frac{V_{cc}}{I_E} \]
\[R_P = \frac{V_{cc}}{I_E} \]
\[KVL \]
\[I_E = \frac{V_{BB}-V_{BE(a)}}{\beta} \]
\[I_C = \frac{V_{BB}-V_{BE(a)}}{\alpha+\beta} \]

Example:
\[V_{cc} = 10V, V_{BE(a)} = 0.7V, R_E = 5k\Omega, R_1 = R_2 = 20k\Omega \]
\[B = 200 \rightarrow \alpha = \frac{200}{201} = 0.995 \]
\[V_{BB} = 9.5V \]
\[I_C = \frac{0.7}{5k\Omega + 20k\Omega} = 0.35mA \]
\[I_E = \frac{4.3}{5k\Omega + 0.9k\Omega} = 0.86mA \]
Example: Find the DC operating pt.

- Want Ic's of all elements
- Simultaneous
- Elements

\[V_{CC} = 10V \]
\[R_{ref} = 10k\Omega \]
\[Q_1 \]
\[Q_2 \]
\[Q_3 \]
\[Q_4 \]
\[Q_5 \]
\[Q_6 \]

\[I_{Ic} = \frac{V_{CC} - V_{BE}(n)}{R_{ref}} = \frac{10 - 0.7}{10K} = 0.93mA \]

\[V_{CE} = V_{BE}(a) = 0.7V \]

For Q_5 to be FA, need:
- \[V_{CE}\text{sat} > 0.2V \]
- \[V_0 < V_{CC} - V_{BE}(n) - V_{CE}\text{sat} \]

\[V_0 = V_{BE}(n) + I_{ref}R_S = 0.7 + (0.93mA)(2k) = 2.56V \]

In biasing, \(V_{BE(n)} \) are well-defined

\[V_{BE(n)} \]

\[V_0 < V_{CC} - V_{BE}(n) - V_{CE}\text{sat} \]
\[10 - 0.7 - 0.2 = 9.1V \]

What if \(R_S = 20k\Omega \)?

\[V_0 = 0.7V + (0.93mA)(20k) = 19.3V \rightarrow \]

\[Q_5 \text{ is saturated!} \]

\[V_0 = V_{CC} - V_{BE}(n) - V_{CE}(sat) = 9.1V \]

\[I_{ES} = \frac{V_0 - V_{BE}(n)}{R_S} = \frac{9.1 - 0.7}{20K} = 0.42mA \]