Lecture 18: Stability

- **Announcements:**
 - Midterm: Thursday, Oct. 29, 6-8 p.m. in 141 McCone (this coming Thursday)
 - No lecture this coming Thursday -> Prof. Nguyen will hold office hours, instead
 - Midterm info sheet online (indicates extra office hours this week)
 - Solutions to all HW's through HW#7 online (except 1A)
 - Review Session on Tuesday evening, 6-8 p.m., in 293 Cory
 - 240A students: HW#1A due Friday, Nov. 6

- **Lecture Topics:**
 - Finish output stages
 - Stability

- **Last Time:**
 - Nearly finished output stages ... finish now

 \[i_x = i_{x'} \]

 \[\frac{v_x}{i_x} = \frac{R_{o2}}{R_{o2}} \]

 \[\frac{v_x}{i_x'} = \frac{1}{2} (B+1) \]

 \[\frac{v_x}{i_x} = \frac{1}{2} \frac{1}{R_{o2}} \]

 \[\frac{i_x'}{i_x} = (B+1) \]

 \[\frac{v_x}{i_x} = \frac{1}{2} \frac{1}{R_{o2}} \]

 \[\frac{i_x'}{i_x} = (B+1) \]

 \[\frac{v_x}{i_x} = \frac{1}{2} \frac{1}{R_{o2}} \]

 \[\frac{i_x'}{i_x} = (B+1) \]
Class A Output Stage (last time)

\[V_{CC} \]
\[V_i \]
\[V_{BE} \]
\[V_{EE} \]
\[V_C \]
\[V_{CE} (sat) \]
\[V_o \]
\[(V_C = V_o + V_{BE}) \approx V_o + V_{BE} \]

More accurate:

\[V_{BE} \neq \text{const.} = V_T \ln \left(\frac{I_{C1}}{I_{S1}} \right) \quad (Q_1 \text{ in FAB}) \]

\[I_C = I_Q + I_0 = I_Q + \frac{V_o}{R_L} \]

\[V_C = V_o + I_Q R_L \left(\frac{I_Q + V_o}{I_{S1}} \right) \rightarrow \text{for large power} \]

If must drive \(R_L \) small \(\rightarrow \) need large \(I_Q \)

Problem: too much power consumption

\[P_Q = (V_{CC} - V_{EE}) I_Q \rightarrow \text{Dc quiescent power consumption} \]

If want large output swing we need small \(R_L \) \(\rightarrow \) must consume power!

Solution: **Class B Output Stage**

\[V_{CC} \]
\[V_i \]
\[V_{BE} \]
\[V_o = V_C - V_{BE} \]
\[V_{EE} \]
\[V_{CE} (sat) \]

\(\text{deliver power to } R_L \text{ when } V_i \geq 3 \)

\(\text{deliver power to } R_L \text{ when } V_i \leq 6 \)
Operation: $C_1 + C_2$ cut-off

$|V_i| < V_{BE(on)} \rightarrow I_{E1}, I_{E2} = 0 \rightarrow V_o = 0V$

$V_C > V_i > V_{BE(on)} \rightarrow V_o = V_i - V_{BE(on)}$

$V_{omax} = V_c - V_{CE(sat)}$, $V_{omin} = V_{EE} + V_{CE(sat)}$

Problem: Distorted output due to the dead zone.

Solution: Class AB Amplifier

The divider reduces supply emmy voltage to keep Q_1, Q_2 on a very small current.

For $V_o = 0$:

$I_f = \text{small}$

$V_0 = 0$

Setting Time:

V_A takes time to get to constant if time needed.
Stability & Compensation

In general, op amps are used in neg FB loops.

Reason:
1. Feedback sets the biasing and no large coupling or bypass caps needed.
2. FB increases BW.
3. FB increases linearity at inpt range.
 (e.g., emitter degeneration is a type of FB)
4. Gain determined by external FB comp. more accurate than op amp gain.
5. FB sets R1 and R2.
6. FB can improve temp. stability.

Stability & Compensation

= Problem: any FB loop can become unstable under certain conditions. Must compensate to suppress instability.

Ex. Non-inverting Amplifier

\[V_o = \frac{A(s)}{1+A(s)f} \]

Loop Transmission: \(T(c) = A(s)f \) for op freq.

Instability occurs when \(A(s) \rightarrow \infty \!

\[\Rightarrow A(s) = \frac{a(s)}{1+a(s)f} \Rightarrow A(s) = \frac{\frac{a(s)}{1+a(s)f}}{1} \rightarrow \infty \]

\[f \] will also go

\(a(s)f = -1 \) unstable if

loop transmission denominator is \((-1)\)
In General:

If $|a(s)| \geq 1$ when $\phi(s) = -180^\circ$, then the circuit is unstable.

This is a simplified form of the Nyquist criterion.

Stability of a FB Ckt. Using a Single-Pole Op Amp

For a single-pole op amp: $a(s) = \frac{a_0}{1 - \frac{s}{p_1}}$

Thus: (closed loop)

$$A(s) = \frac{a(s)}{1 + a(s)} = \frac{a_0}{1 + \frac{s}{p_1}}$$

$T(s) = a(s) = \text{open-loop gain}$

$T(c) = a(s)T(s) = \text{loop transmission (defined for general freqs.)}$

Bode Plot

- Use to determine $a(s)$ when $|a(s)| = 1$ dB
- Then can determine stability

![Bode Plot Diagram]

- $T(s)$: open-loop TF
- $T(c)$: closed-loop TF
- $a_0 = 1 + a(s)$
- $a(s) = 1 + a(s)$
- $T(s) = 1 + a(s)$
Remarks:

1. For the case of a single-pole op amp, $\angle A(s) = -180^\circ$. (90° is the limit.)

2. Thus, a single-pole op amp in FB with $f = \text{const.}$, i.e., f is a function of $s = j\omega$, is always stable.

But in reality, any op amp will have more than one pole, and the poles get to

\[\angle A(s) = -180^\circ \]

instigate instability.

Use a Bode plot to investigate.