Lecture 17: Slew Rate & Output Stages

• **Announcements:**
 - HW#7 due Monday, Oct. 26, at 8 a.m.
 - 240A students should be working on HW#1A, too, due Friday, Nov. 6
 - I will be traveling again this Friday, returning next Monday - should be back in time for office hours, depending on flight arrival time
 - Midterm will be on the date specified in your syllabus: Thursday, Oct. 29, 6-8 p.m. in 141 McCone

• **Lecture Topics:**
 - Slew Rate (a 1st pass)
 - Output Stages

• **Last Time:**
 - Telescopic op amps

• For the compensation part of your lab, just assume the load is the oscilloscope input, which is probably 1MΩ
Reason: 1st or 2nd stage of op amp cannot source enough current to mimic the shape (or speed) of a fast rising theoretical output waveform.

Ex. Apply a fast (i.e., high freq., large amplitude) sinusoid.

\[V_{no} = \frac{\Delta V}{\Delta t} \]

\[SR = \text{Slew Rate} = \frac{\Delta V_{no}}{\Delta t} = \frac{2I_t}{C_c} \]

Stability determined

\[\text{settling time} = T_s \]

Determine \(V_o \) for \(SR \)

Can follow small sinusoid

Cannot follow large one

\[V_{DD} \]

\[V_o \]

\[M_1, M_2 \]

\[\mu \]

\[C_c \]

\[Q \]

\[\frac{\Delta V_{no}}{\Delta t} \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{no} \]

\[V_{DD} \]

\[C_c + Q \]

\[M_1, M_2 \]

\[\mu \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[V_{DD} \]

\[V_{no} \]

\[C_c + Q \]

\[M_1, M_2 \]

\[\mu \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]

\[V_{DD} \]

\[V_{no} \]

\[C_c \]

\[Q \]

\[V_{in} \]

\[2I_t \]

\[\int 2I_t \, dt \]

\[T_s \]
Output Stages

- **Class A** (Emmitte a Sava Follina)
- **Class B**
- **Class AB** (we’ll do this one later)

Purpose: Drive loads

1. Delins power with small distortion.
2. Minimize output impedance so that the amplifier gain is insensitive to the load.

Desirable Attributes:

1. High RH; Low RC: **assuring voltage application**
2. Low quiescent power.
3. Minimal effect on the amplifier freq. response.
4. Should be able to handle large input/output swings.
 (i.e., V_i may be $\approx V_t$, invalidating small-signal approximations)

Emmitte Follina (Class A)

Two Main Cases:

1. $I_o > 0, V_o > 0$:
 - I_o can occur from Q_1
 - I_o can be achieved for $V_o > V_t$

2. $I_o < 0, V_o < 0$:
 - I_o must be sunk through R_E to V_{EE}.
 - $I_o = \frac{V_o - V_{EE}}{R_E}$
 - Issue: $I_o = f(V_o)$
 - I_o may be $\approx V_t$, invalidating small-signal approximations

Solution: Replace R_E with a current source.
Two Cases: (depending on the size of R_L)

Case 1: R_L is large ($I_o < I_q$)

- I_o not limiting much
- I_c is not limiting much
- For V_i large and ($+$): Q_1 must source $I_o + I_q$
- $V_o = V_i - V_{BE1}$ at some point, Q_1 will saturate as $V_o \uparrow$

Get $V_{max} = V_{CC} - V_{CE1(sat)}$

$V_i = V_{CC} - V_{CE1(sat)} + V_{BE1} \leq V_{CC}$

For V_i large and ($-$): V_o follows V_i until Q_2 saturates

Get $V_{min} = V_{EE} + V_{CE2(sat)}$

$V_i = V_o + V_{BE1} = V_{EE} + V_{CE2(sat)} + V_{BE1}$

Case 2: R_L is small

- I_o can be large
- For V_i large and ($+$): Q_1 can source as much current as needed until it either saturates or it fries
- For V_i large and ($-$): $V_o = I_o R_L \Rightarrow \text{min.} V_o = -I_o R_L$

$\Rightarrow Q_1$ cuts off ($I_c \approx 0$)

Further decrease in V_i yields no V_o
If must drive R_L: small \rightarrow need large I_Q

Problem: too much power consumption

$P_Q = (V_C - V_{EE})I_Q \rightarrow$ DC component power consumption

If want large output swing with small R_L, must consume power.

Solution: Common Collector Stage

\[V_o = V_C - V_{BE(m)} \]

\[V_o = V_C - V_{BE} \]

\[V_o = V_C - V_{BE(m)} \]

\[V_{CE(m)} \]

Operation:

1. $|V_x| < V_{BE(m)} \rightarrow I_{E1}, I_{E2} = 0 \rightarrow V_o = 0V$
2. $V_C = (V_x > V_{BE(m)} \rightarrow V_o \approx V_x - V_{BE(m)}$
3. $V_{max} = V_C - V_{CE(1st)}$, $V_{min} = V_{EE} + V_{CE(2nd)}$
4. $V_{CE(m)}$ = slope 1
5. $V_{EE} + V_{CE(2nd)}$
6. $V_{BE(m)}$
7. V_{max}

\[V_{CC} - V_{CE} \]

\[V_x \]

\[V_{BE} \]

\[V_{max} \]

\[V_{min} \]

\[V_{EE} + V_{CE} \]