MOSFET Small-Signal:

\[g_{mb} = \frac{V_{gs} \cdot 2}{Z \cdot V_{sd} + Z \cdot f} = \frac{1}{Z} \]

KCL:

\[g_m \cdot V_{gs} + g_{mb} \cdot V_{ds} + g_{ds} \cdot V_{ds} + I_{test} = 0 \]

\[V_{gs} = V_{g} - V_{s} = 0 - V_{test} = -V_{test}; \quad V_{ds} = 0 - V_{test} = -V_{test} \]

\[V_{g} = 0 - V_{test} = -V_{test} \]

\[\Rightarrow g_{s} = \frac{I_{test}}{V_{test}} = \frac{g_m + g_{mb} + g_{ds}}{V_{test}} \]

What is effective s.s. transconductance with emitter degeneration?

\[V_i = T_{id} R_{e} \Rightarrow \]

KCL at D:

\[g_m (V_i - V_s) + g_{mb} (0 - V_s) + g_{ds} (0 - V_s) = i_d \]

\[g_m V_i - V_s (g_m + g_{mb} + g_{ds}) = i_d \]

But, at \(S \), \(i_d = g_m V_s \)

\[\Rightarrow g_m V_i = i_d + (g_m + g_{mb} + g_{ds}) R_{e} i_d \]

\[G_m = \frac{i_d}{V_i} = \frac{g_m}{1 + (g_m + g_{mb} + g_{ds}) R_{e}} \]

Inspection analysis with body effect: Replace \(g_m \rightarrow g_{mb} + g_{ds} \) in denominators.
Example:

\[
\frac{U_i}{U_{DD}} \quad \Rightarrow \quad \frac{U_i}{U_{0}}
\]

\[
\begin{align*}
U_i & \quad \Rightarrow \quad V_i \\
\end{align*}
\]

\[
\begin{align*}
\text{Inspection} \Rightarrow \quad \frac{U_0(s)}{U_i} & = \frac{g_m}{g_{out}} \left(\frac{1 + sC_{gs}/g_m}{1 + sC_{out}/g_{out}} \right) \\
\end{align*}
\]

\[
\begin{align*}
\therefore \quad W_2 & = -\frac{g_m}{C_{gs}} \quad (\text{Left-half-plane zero}) \\
\end{align*}
\]

\[
\begin{align*}
C_{out} & = C_L + C_{sb} + C_{gs} \quad (C_{gb} \text{ driven by ideal voltage source; } C_{sb} \text{ shorted to } \text{ground}) \\
\end{align*}
\]

\[
\begin{align*}
\therefore \quad W_p & = -\left(\frac{g_m + g_{mb} + g_{ds} + g_E}{C_{gs} + C_{sb} + C_L} \right) \quad (\text{Left-half-plane pole}) \\
\end{align*}
\]

Frequency Response Analysis:

Consider the four different singularities:
(A.) Left-half-plane (LHP) pole:

\[G(s) = \frac{1}{1+\frac{s}{\omega_p}} \]

Recall: Set \(s = j\omega \) to evaluate frequency response:

\[A(j\omega) = \frac{1}{1 + j\omega/\omega_p} \]

\[|A(j\omega)| = \frac{1}{\sqrt{1 + (\omega/\omega_p)^2}} \]

\[\angle A(j\omega) = -\tan^{-1}(\omega/\omega_p) \]

For Bode plot:

\[\text{dB} = 20 \log_{10} |A(j\omega)| \]

\[= 20 \log_{10} \left(\frac{1}{\sqrt{1 + (\omega/\omega_p)^2}} \right) = -10 \log_{10} \left(1 + (\omega/\omega_p)^2 \right) \]

i) For \(\omega \ll \omega_p \), \(\text{dB} = -10 \log_{10} 1 = 0 \text{ dB} \)

ii) For \(\omega = \omega_p \), \(\text{dB} = -10 \log_{10} 2 = -3 \text{ dB} \)

iii) For \(\omega \gg \omega_p \), \(\text{dB} = -10 \log_{10} \left(\frac{\omega}{\omega_p} \right)^2 = -20 \log_{10} \left(\frac{\omega}{\omega_p} \right) \) (\(-20 \text{ dB/decade}\))

\[\angle A(j\omega) = -\tan^{-1}(\omega/\omega_p) \]

i) For \(\omega \ll \omega_p \), \(\angle A(j\omega) = -\tan^{-1} 0 = 0^\circ \)

ii) For \(\omega = \omega_p \), \(\angle A(j\omega) = -\tan^{-1} 1 = -45^\circ \)

iii) For \(\omega \gg \omega_p \), \(\angle A(j\omega) = -\tan^{-1} 0 \approx -90^\circ \)

* For completeness at \(\omega_p/10 \) and 10 \(\omega_p \) used for asymptotic analysis:

i) \(\omega = \omega_p/10 \); \(\angle A(j\omega) = -\tan^{-1} \omega/\omega_p \)

\[= -\tan^{-1} 1/10 \approx -5.71^\circ \]

ii) \(\omega = 10 \omega_p \); \(\angle A(j\omega) = \tan^{-1}(10) = -84.29^\circ \)
The four singularities:

LHP pole

\[\frac{w}{w_p} \]

\[-20 \text{ dB/dec.} \]

\[0 \]

\[-45^\circ \text{ dec.} \]

\[\frac{w_{10}}{w} \]

\[\frac{w_{10}}{w_{100}} \]

- **S-plane**

RHP pole

\[\frac{jw}{w_p} \]

\[-20 \text{ dB/dec.} \]

\[0 \]

\[-45^\circ \text{ dec.} \]

\[\frac{w_{10}}{w} \]

\[\frac{w_{10}}{w_{100}} \]

- **S-plane**

LHP zero

\[\frac{1}{jw} \]

\[+20 \text{ dB/dec.} \]

\[45^\circ \]

\[\frac{w_{10}}{w} \]

\[\frac{w_{10}}{w_{100}} \]

- **S-plane**

RHP zero

\[\frac{1}{jw} \]

\[+20 \text{ dB/dec.} \]

\[45^\circ \]

\[\frac{w_{10}}{w} \]

\[\frac{w_{10}}{w_{100}} \]

- **S-plane**

Store these in your memory for inspection analysis

Example Bode plot: (Assume poles and zeros are widely spaced, e.g., more than 100x)

\[A(s) = \frac{A_0 (1 + s/w_2)}{(1 + s/w_1)(1 + s/w_2)} \]

\[|A(jw)| = 20 \log \frac{A_0 |1 + jw/w_2|}{|1 + jw/w_1||1 + jw/w_2|} \]

So, just add logs of individual terms to get overall Bode magnitude plot.
Note: phase bump in frequency response

Add phase plots to get overall phase
Dominant Pole Estimation:

Motivation: An opamp may have many internal poles. But, we want it to be stable in (worst-case) closed-loop application (unity-gain configuration). Note: -180° phase shift corresponds to a sign change; i.e., negative F.B. becomes positive F.B. and circuit can oscillate. Goal: Limit total phase shift to < 180°. So, to a first-order, design for single-pole response = -90 phase shift.

General Transfer Function:

\[A(s) = \frac{N(s)}{D(s)} = \frac{a_0 + a_1 s + a_2 s^2 + \cdots + a_m s^m}{1 + b_1 s + b_2 s^2 + \cdots + b_n s^n} \quad (m \leq n) \]

Many times only poles and unimportant or no zeros

\[A(s) = \frac{K}{(1 - \frac{s}{p_1})(1 - \frac{s}{p_2}) \cdots (1 - \frac{s}{p_n})} \quad \text{after factoring with constant} \]

\[= \frac{K}{1 + s\left(\frac{1}{p_1} + \frac{1}{p_2} + \cdots + \frac{1}{p_n}\right) + s^2\left(\frac{1}{p_1 p_2 p_3} + \cdots \right)} \]

\[b_1 = \sum_{i=1}^{n} \frac{1}{p_i} \quad \text{from above} \]

\[\text{Dominant pole } \Rightarrow |p_1| < 1 \text{ or } |p_2|, |p_3|, \text{ etc.} \]

\[x \quad \text{or} \quad \frac{1}{p_i} \]

\[\sigma \quad (\text{note: change in terminology: } p_i \text{ is negative for LP pole}) \]
From above: \[|A(j\omega)| = \frac{K}{\sqrt{1 + (\omega/p_1)^2} \cdot \sqrt{1 + (\omega/p_2)^2} \cdots \sqrt{1 + (\omega/p_n)^2}} \]

\[= \frac{K}{\sqrt{1 + (\omega/p_1)^2}} \text{ for dominant pole} \]

2. \(\omega_{-3dB} \approx \frac{1}{b_1} \)

Millar Effect:

\[V_{dd} \quad R_D \quad V_0 \]

\[^{V_{dd}} \]

\[R_D \quad ^{V_0} \]

(Case: assume B
 grounded
 unless indicated
 otherwise)

Millar Effect Values:

\[C_m = (1 - A_vo) \cdot C_{gd} = (1 + \frac{g_m}{g_D + g_ds}) \cdot C_{gd} \]

- Can be much larger than \(C_{gd} \); i.e., "Millar Multiplied Capacitance"

\[C_x = (1 - \frac{1}{A_vo}) \cdot C_{gd} = (1 - \frac{g_D + g_ds}{g_m}) \cdot C_{gd} \approx C_{gd} \text{ for large gain values (>5vdb)}\]

Millar Effect greatly simplifies dominant pole frequency calculations

\[Z_v = \text{Zero Value Time Constant Method} \]

\[\Rightarrow |b_1 = \frac{Z_v}{T_o}| \]

Read 3.3 in S.M.
\[Z_{UTC} : \ b_1 = \sum T_i = \sum C_i R_i \]

- \(C_i \) = important caps for high freq. response; e.g., transistor caps and \(C_L \) treat large bypass and coupling capacitors as short circuits.
- \(R_i \) = Driving point resistance for each \(C_i \).

Example:

Imagine where important caps are (as shown):
- \(C_{pi}, C_{mu}, C_{es}, C_L \)

Strategy:
1) First, consider caps) connected between gain nodes (A to B) and apply Miller Effect to simplify:

\[AV_0 = -\frac{g_m}{g_c + g_0} \]

\[C_m = C_{mu} \left(1 + \frac{g_m}{g_c + g_0} \right) \]

\[C_X = C_{mu} \text{ for } AV_0 > 5 \]
(2) Consider parallel capacitors together as one capacitance:

\[
\begin{align*}
& \text{by inspection:} \\
& R_{D0} = R_s / (s \pi) \\
& g_{D0} = g_s + s \pi
\end{align*}
\]

(3) Replace capacitors one at a time with \(V_{\text{test}} \) source to get driving point resistance:

i) \((C_T + C_m)\):

\[
R_{D0} = g_{m} \left(\frac{1 + \frac{g_m}{g_c + g_0}}{s \pi} \right)
\]

By inspection:

\[
\begin{align*}
R_{D0} &= R_s \parallel \pi \\
g_{D0} &= g_s + g_{\pi}
\end{align*}
\]

ii) \((C_L + C_x)\):

\[
R_{D0} = \frac{1}{g_c + g_0}
\]

Again, by inspection:

\[
T_{D0} = R_{D0} (C_x + C_L)
\]

\[
= \frac{1}{g_c + g_0} \left[C_x + C_L \right]
\]
So, \(b_i = \frac{1}{2T_i} \approx \frac{1}{W_{-3dB}} \) (dominant pole)

\[
W_{-3dB} = \frac{1}{2T_i} = \frac{1}{\frac{1}{g_s + g_n} \left[\frac{C_m + C_m (1 + g_m)}{g_x + g_o} \right] + \left(\text{Cut off} \right)} \frac{1}{g_x + g_o}
\]

How does this compare?

Suppose \(R_s = 0 \) (\(g_s = \infty \)).

\[
W_{-3dB} = \frac{g_x + g_o}{g_m + g_L} = \frac{g_{out}}{2g_{out}}
\]

\(\text{Same as we saw for ideal (no R_s) single-stage CE amp!} \)