8. For the system in Problem 35, compute the following steady-state errors:

(a) to a unit-step reference input;
(b) to a unit-ramp reference input;
(c) to a unit-step disturbance input;
(d) for a unit-ramp disturbance input.

(e) Verify your answers to parts (a) to (d) using MATLAB. Note that a ramp response can be generated as the step response of a system modified by an added integrator at the reference input.

Solution:

(a)

\[
\Omega_r(t) = u(t) \implies \Omega_r(s) = \frac{1}{s}
\]

\[
e_{ss} = \lim_{s \to 0} s\Omega_r(s) \frac{1}{1 + G(s)}
\]

\[
= \lim_{s \to 0} s \left(\frac{1}{s} \frac{1}{1 + (k_p + \frac{k_I}{s})(\frac{600}{s+60})} \right)
\]

\[
= 0
\]

(b)

\[
\Omega_r(t) = r(t) \implies \Omega_r(s) = \frac{1}{s^2}
\]

\[
e_{ss} = \lim_{s \to 0} s \frac{1}{s^2} \left(\frac{1}{1 + (k_p + \frac{k_I}{s})(\frac{600}{s+60})} \right)
\]

\[
= \frac{1}{10k_I}
\]

(c)

\[
e_{ss} = \lim_{s \to 0} [sW(s) \frac{1500}{600} \frac{600}{s+60} \frac{600}{1 + \frac{600}{s+60}(k_p + \frac{k_I}{s})}]
\]

\[
W(s) = \frac{1}{s}
\]

\[
e_{ss} = \lim_{s \to 0} [s \frac{1500}{s} \frac{600}{s+60} \frac{600}{1 + \frac{600}{s+60}(k_p + \frac{k_I}{s})}]
\]

\[
= 0
\]
\[W(s) = \frac{1}{s^2} \]

\[\varepsilon_{ss} = \lim_{s \to 0} \left(s^2 \frac{1500}{600} \frac{600}{s + 60} \left(\frac{600}{s + 60} \left(k_p + \frac{k_I}{s} \right) \right) \right) \]

\[= \frac{15}{6} \frac{1}{k_I} = 2.5 \frac{1}{k_I} \]

See attached transient responses.
9. Consider the system shown in Fig. 4.33. Show that the system is type 1 and compute the K_v.

![Figure 4.33: Control system for Problem 9](image)

Solution:

The system has unity feedback with one pole at $s = 0$ and is thus Type 1 with $K_v = \lim_{s \to 0} sG(s) = K_b$.
11. Consider the system shown in Fig. 4.35, where

\[D(s) = K \frac{(s + \alpha)^2}{s^2 + \omega_n^2}. \]

![Control system diagram](image)

Figure 4.35: Control system for Problem 11

(a) Prove that if the system is stable, it is capable of tracking a sinusoidal reference input \(r = \sin \omega_n t \) with zero steady-state error. (Look at the transfer function from \(R \) to \(E \) and consider the gain at \(\omega_n \).

(b) Use Routh’s criteria to find the range of \(K \) such that the closed-loop system remains stable if \(\omega_n = 1 \) and \(\alpha = 0.25 \).

Solution:

(a)

\[
D(s)G(s) = \frac{K(s + \alpha)^2}{(s^2 + \omega_n^2)s(s + 1)}
\]

\[
E(s) = \frac{1}{1 + DG}
\]

\[
= \frac{s(s + 1)(s^2 + \alpha^2)}{(s^2 + \omega_n^2)s(s + 1) + K(s + \alpha)^2}
\]

The gain of this transfer function is zero at \(s = \pm j \omega_n \) and we expect the error to be zero if \(R \) is a sinusoid at that frequency. More formally, let \(R(s) = \frac{\omega_n}{s^2 + \omega_n^2} \) then

\[
E(s) = \frac{s(s + 1)(s^2 + \omega_n^2)}{(s^2 + \omega_n^2)s(s + 1) + K(s + \alpha)^2} \frac{\omega_n}{s^2 + \omega_n^2}
\]

Assuming the (closed-loop) system is stable, then if \(\omega_n = \omega_o \) \(E(s) \) has a pole on the imaginary axis and the FVT does not apply. The final error will NOT be zero in this case. However, if \(\omega_n = \omega_o \) we can use the FVT and

\[
e_{ss} = \lim_{s \to 0} sE(s) = 0
\]
12. Consider the system shown in Fig. 4.36 which represents control of the angle of a pendulum which has no damping.

\[Y = \frac{1}{s^2}(W + D(R - Y) - KY) \]

\[Y\left(\frac{s^2 + D + K}{s^2}\right) = \frac{W + DR}{s^2} \]

\[Y = \frac{D}{s^2 + D + K} R + \frac{1}{s^2 + D + K} W \]

\[E(s) = R(s) - Y(s) = \frac{-D + s^2 + D + K}{s^2 + D + K} R(s) \]

\[= \frac{s^2 + K}{s^2 + D + K} R(s) \]
for constant steady-state error to a ramp,

\[
\lim_{s \to 0} s\left(\frac{s^2 + K}{s^2 + D + K}\right) = \text{constant}
\]

\[
\lim_{s \to 0} sD(s) = \text{constant}
\]

\[D(s)\text{ must have a pole at the origin.}\]

(b)

\[
Y(s) = \frac{1}{s^2 + D(s) + K}W(s)
\]

\[
\lim_{s \to 0} s\left(\frac{1}{s^2 + D(s) + K}\right) = 0
\]

iff

\[
\lim_{s \to 0} s^{\ell-1}D(s) = \infty
\]

iff \(\ell = 1\) since \(D(s)\) has a pole at the origin. Therefore system will reject step disturbances.

(c) For PI-controller,

\[
D(s) = (k_p + \frac{k_I}{s})
\]

\[
\frac{Y(s)}{R(s)} = \frac{D(s)}{s^2 + D(s) + K} = \frac{k_p s + k_I}{s^2 + (\frac{k_p s + k_I}{s}) + K}
\]

\[
= \frac{k_p s + k_I}{s^3 + (k_p s + k_I) + K s}
\]

Because there is no term in \(s^2\) this characteristic equation must have at least one pole in the right half-plane. Try PID the controller, \(D(s) = (k_p + k_D s + \frac{k_I}{s})\)

\[
\frac{Y(s)}{R(s)} = \frac{k_D s^2 + k_p s + k_I}{s^3 + (k_D s^2 + k_p s + k_I) + K s}
\]

\[
= \frac{k_D s^2 + k_p s + k_I}{s^3 + k_D s^2 + (k_p + K)s + k_I}
\]

Routh’s test on the characteristic equation is:

\[
\begin{array}{ccc}
s^3 : & 1 & K + k_p \\
s^2 : & k_D & k_I \\
s : & k_D(k_p + K) - k_I & 0 \\
s^0 : & k_D & k_I & 0
\end{array}
\]
17. A controller for a satellite attitude control with transfer function \(G = \frac{1}{s^2} \) has been designed with a unity feedback structure and has the transfer function \(D(s) = \frac{10(s + 2)}{s + 5} \).

(a) Find the system type for reference tracking and the corresponding error constant for this system.

(b) If a disturbance torque adds to the control so that the input to the process is \(u + w \), what is the system type and corresponding error constant with respect to disturbance rejection?

Solution:

(a)

\[K_p = \lim_{s \to 0} D(s)G(s) = \infty \]

\[e_{ss} = \frac{1}{1 + K_p} = 0. \]

\[K_v = \lim_{s \to 0} sD(s)G(s) = \infty \]

\[e_{ss} = \frac{1}{K_v} = 0. \]

\[K_a = \lim_{s \to 0} s^2D(s)G(s) = 4 \]

\[e_{ss} = \frac{1}{K_a} = 0.25. \]

(b) For the disturbance input, the error is

\[\frac{E(s)}{W(s)} = -\frac{G}{1 + GD} = -\frac{s + 5}{s^2(s + 5) + 10(s + 2)} \]

The steady-state error to a step is thus \(e_{ss} = 0.25 = \frac{1}{1 + K_p} \). Therefore,

\[K_p = 3 \]
CHAPTER 5. THE ROOT-LOCUS DESIGN METHOD

Solution:

(a) \(K = 1/\tau; a = s; b = 1 \)

(b) \(K = c; a = s^2 + 1; b = s + 1 \)

(c) Part (c)
 i. \(K = AT; a = (s + c)^3; b = s + 1/T \)
 ii. \(K = AT; a = (s + c)^3 + A; b = s \)
 iii. The parameter \(c \) enters the equation in a nonlinear way and a standard root locus does not apply. However, using a polynomial solver, the roots can be plotted versus \(c \).

(d) Part (d)
 i. \(K = k_p A \tau; a = s(s + 1/\tau)d(s) + k_I(s + 1/\tau)c(s) + \frac{k_D}{\tau}s^2 Ac(s); \quad b = s(s + 1/\tau)c(s) \)
 ii. \(K = Ak_I; a = s(s + 1/\tau)d(s) + Ak_p s(s + 1/\tau) + \frac{k_D}{\tau}s^2 Ac(s); \quad b = s(s + 1/\tau)c(s) \)
 iii. \(K = \frac{Ak_D}{\tau}; a = s(s + 1/\tau)d(s) + Ak_p s(s + 1/\tau)c(s) + Ak_I(s + 1/\tau)c(s); \quad b = s^2 c(s) \)
 iv. \(K = 1/\tau; a = s^2 d(s) + k_p A s^2 c(s) + k_I A s c(s); \quad b = s d(s) + k_p A s c(s) + k_I A c(s) + k_D s^2 A c(s) \)

Problems and solutions for Section 5.2

2. Roughly sketch the root loci for the pole-zero maps as shown in Fig. 5.62. Show your estimates of the center and angles of the asymptotes, a rough evaluation of arrival and departure angles for complex poles and zeros, and the loci for positive values of the parameter \(K \). Each pole-zero map is from a characteristic equation of the form

\[1 + K \frac{b(s)}{a(s)} = 0, \]

where the roots of the numerator \(b(s) \) are shown as small circles \(o \) and the roots of the denominator \(a(s) \) are shown as \(\times \)s on the \(s \)-plane. Note that in Fig. 5.62(c), there are two poles at the origin.

Solution:

(a) \(a(s) = s^2 + s; b(s) = s + 1 \)

Breakin(s) -3.43; Breakaway(s) -0.586

(b) \(a(s) = s^2 + 0.2s + 1; b(s) = s + 1 \)
Figure 5.62: Pole-zero maps from Figure 5.62

Angle of departure: 135.7
Breakin(s) -4.97
(c) $a(s) = s^2; \ b(s) = (s + 1)$
Breakin(s) -2
(d) $a(s) = s^2 + 5s + 6; \ b(s) = s^2 + s$
Breakin(s) -2.37
Breakaway(s) -0.634
(e) $a(s) = s^3 + 3s^2 + 4s - 8$
Center of asymptotes -1
Angles of asymptotes ±60, 180
Angle of departure: -56.3
(f) $a(s) = s^3 + 3s^2 + s - 5; \ b(s) = s + 1$
Center of asymptotes -0.667
Angles of asymptotes ±60, -180
Angle of departure: -90
Breakin(s) -2.06
Breakaway(s) 0.503

3. For the characteristic equation

\[1 + \frac{K}{s(s + 1)(s + 5)} = 0 : \]

(a) Draw the real-axis segments of the corresponding root locus.
(b) Sketch the asymptotes of the locus for \(K \to \infty \).
(c) For what value of \(K \) are the roots on the imaginary axis?
(d) Verify your sketch with a MATLAB plot.

Solution:

(a) The real axis segments are \(0 > \sigma > -1; -5 > \sigma \)
(b) \(\alpha = -6/3 = -2; \phi_i = \pm 60, 180 \)
(c) \(K_o = 30 \)

Solution for Problem 5.3

4. *Real poles and zeros.* Sketch the root locus with respect to \(K \) for the equation \(1 + KL(s) = 0 \) and the following choices for \(L(s) \). Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a) \(L(s) = \frac{1}{s(s + 1)(s + 5)(s + 10)} \)
(b) \(L(s) = \frac{s + 2}{s(s + 1)(s + 5)(s + 10)} \)
(c) \(L(s) = \frac{(s + 2)(s + 6)}{s(s + 1)(s + 5)(s + 10)} \)
(d) \[L(s) = \frac{(s + 2)(s + 4)}{s(s + 1)(s + 5)(s + 10)} \]

Solution:

All the root locus plots are displayed at the end of the solution set for this problem.

(a) \(\alpha = -4; \phi_i = \pm 45; \pm 135; \omega_o = 1.77 \)
(b) \(\alpha = -4.67; \phi_i = \pm 60; \pm 180; \omega_o = 5.98 \)
(c) \(\alpha = -4; \phi_i = \pm 90; \omega_o \rightarrow \text{none} \)
(d) \(\alpha = -5; \phi_i = \pm 90; \omega_o \rightarrow \text{none} \)

5. **Complex poles and zeros** Sketch the root locus with respect to \(K \) for the equation \(1 + KL(s) = 0 \) and the following choices for \(L(s) \). Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a) \[L(s) = \frac{1}{s^2 + 3s + 10} \]
(b) \[L(s) = \frac{1}{s(s^2 + 3s + 10)} \]
(c) \[L(s) = \frac{(s^2 + 2s + 8)}{s(s^2 + 2s + 10)} \]

(d) \[L(s) = \frac{(s^2 + 12)}{s(s^2 + 2s + 10)} \]

(e) \[L(s) = \frac{(s^2 + 1)}{s(s^2 + 4)} \]

(f) \[L(s) = \frac{(s^2 + 4)}{s(s^2 + 1)} \]

Solution:

All the root locus plots are displayed at the end of the solution set for this problem.

(a) \[\alpha = -3; \phi_i = \pm 90; \theta_d = \pm 90 \text{ } \omega_o \rightarrow \text{none} \]

(b) \[\alpha = -3; \phi_i = \pm 60, \pm 180; \theta_d = \pm 28.3 \text{ } \omega_o = 3.16 \]

(c) \[\alpha = -2; \phi_i = \pm 180; \theta_d = \pm 161.6; \theta_a = \pm 200.7; \omega_o \rightarrow \text{none} \]

(d) \[\alpha = -2; \phi_i = \pm 180; \theta_d = \pm 18.4; \theta_a = \pm 16.8; \omega_o \rightarrow \text{none} \]

(e) \[\alpha = 0; \phi_i = \pm 180; \theta_d = \pm 180; \theta_a = \pm 180; \omega_o \rightarrow \text{none} \]

(f) \[\alpha = 0; \phi_i = \pm 180; \theta_d = 0; \theta_a = 0; \omega_o \rightarrow \text{none} \]

Solution to Problem 5.5
6. Multiple poles at the origin Sketch the root locus with respect to K for the equation $1 + KL(s) = 0$ and the following choices for $L(s)$. Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a) $L(s) = \frac{1}{s^2(s + 8)}$

(b) $L(s) = \frac{1}{s^3(s + 8)}$

(c) $L(s) = \frac{1}{s^4(s + 8)}$

(d) $L(s) = \frac{(s + 3)}{s^2(s + 8)}$

(e) $L(s) = \frac{(s + 3)}{s^3(s + 4)}$

(f) $L(s) = \frac{(s + 1)^2}{s^3(s + 4)}$

(g) $L(s) = \frac{(s + 1)^2}{s^3(s + 10)^2}$

Solution:

All the root locus plots are displayed at the end of the solution set for this problem.

(a) $\alpha = -2.67; \phi_i = \pm 60; \pm 180; w_0^- > none$

(b) $\alpha = -2; \phi_i = \pm 45; \pm 135; w_0^- > none$

(c) $\alpha = -1.6; \phi_i = \pm 36; \pm 108; w_0^- > none$

(d) $\alpha = -2.5; \phi_i = \pm 90; w_0^- > none$

(e) $\alpha = -0.33; \phi_i = \pm 60; \pm 180; w_0^- > none$

(f) $\alpha = -3; \phi_i = \pm 90; w_0 = \pm 1.414$

(g) $\alpha = -6; \phi_i = \pm 60; 180; w_0 = \pm 1.31; \pm 7.63$
Solution for Problem 5.6

7. Mixed real and complex poles Sketch the root locus with respect to \(K \) for the equation \(1 + KL(s) = 0 \) and the following choices for \(L(s) \). Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a) \(L(s) = \frac{(s + 2)}{s(s + 10)(s^2 + 2s + 2)} \)

(b) \(L(s) = \frac{(s + 2)}{s^2(s + 10)(s^2 + 6s + 25)} \)

(c) \(L(s) = \frac{(s + 2)^2}{s^2(s + 10)(s^2 + 6s + 25)} \)

(d) \(L(s) = \frac{(s + 2)(s^2 + 4s + 68)}{s^2(s + 10)(s^2 + 4s + 85)} \)

(e) \(L(s) = \frac{(s + 1)^2 + 1}{s^2(s + 2)(s + 3)} \)

Solution:

All the plots are attached at the end of the solution set.

(a) \(\alpha = -3.33; \ \phi_l = \pm 60; \ \pm 180; \ \phi_0 = \pm 2.32; \ \theta_d = \pm 6.34 \)

(b) \(\alpha = -3.5; \ \phi_l = \pm 45; \ \pm 135; \ \phi_0 \rightarrow \text{none}; \ \theta_d = \pm 103.5 \)
(c) $\alpha = -4; \phi_i = \pm 60; \pm 180; w_0 = \pm 6.41; \quad \theta_d = \pm 14.6$

(d) $\alpha = -4; \phi_i = \pm 90; w_0 > \text{none}; \quad \theta_d = \pm 106; \quad \theta_a = \pm 253.4$

(e) $\alpha = -1.5; \phi_i = \pm 90; w_0 > \text{none}; \quad \theta_b = \pm 71.6$

8. **Right half plane poles and zeros** Sketch the root locus with respect to K for the equation $1 + KL(s) = 0$ and the following choices for $L(s)$. Be sure to give the asymptotes, arrival and departure angles at any complex zero or pole, and the frequency of any imaginary-axis crossing. After completing each hand sketch verify your results using MATLAB. Turn in your hand sketches and the MATLAB results on the same scales.

(a) $L(s) = \frac{s + 2}{s + 10} \frac{1}{s^2 - 1}$: The model for a case of magnetic levitation with lead compensation.

(b) $L(s) = \frac{s + 2}{s(s + 10)} \frac{1}{(s^2 - 1)}$: The magnetic levitation system with integral control and lead compensation.

(c) $L(s) = \frac{s - 1}{s^2}$

(d) $L(s) = \frac{s^2 + 2s + 1}{s(s + 20)^2(s^2 - 2s + 2)}$. What is the largest value that can be obtained for the damping ratio of the stable complex roots on this locus?