Minority Carrier Transport in the Base Region

- BJT current dominated by diffusion of minority carriers (electrons in npn and holes in pnp transistors) across base region.
- Base current consists of hole injection back into emitter and collector and a small additional current to replenish holes lost to recombination with electrons in base.
- Minority carrier concentrations at the two ends of the base region are:
 \[n(0) = n_{bo} \exp\left(\frac{v_{BE}}{V_T}\right) \quad \text{and} \quad n(W_B) = n_{bo} \exp\left(\frac{v_{BC}}{V_T}\right) \]

\(n_{bo} \) is equilibrium electron density in the p-type base region.
Minority Carrier Transport in Base for npn

- For narrow base devices, minority carrier density decreases linearly across the base, and the diffusion current in the base is:

\[I_c = qAD_e \frac{dn}{dx} = qAD_e \frac{n(0) - n(W_b)}{W_b} = \frac{qAD_e}{W_b} \frac{n_{i0}}{N_{ab}} \exp \left(\frac{V_{bb}}{V_T} \right) \]

\[\Rightarrow I_s = qAD_e \frac{n_{i0}}{W_b} = \frac{qAD_e}{W_b} \frac{n_i^2}{N_{ab}} \]

- \(A \): emitter area
- \(D_e \): electron diffusion coefficient
- \(W_b \): base width
- \(n_{i0} = \frac{n_i^2}{N_{ab}} \): equilibrium electron concentration in base (minority carrier)
- \(N_{ab} \): acceptor doping concentration in base
- \(n_i \): intrinsic carrier concentration (=10^{10} \text{ cm}^{-3} \text{ for Si})
- Mass-action law: \(n \cdot p = n_i^2 \) at equilibrium

Minority Carrier Transport in Base for pnp

- Saturation current for the pnp transistor is

\[I_s = qAD_e \frac{p_{i0}}{W_b} = \frac{qAD_e}{W_b} \frac{n_i^2}{N_{DB}} \]

- \(A \): emitter area
- \(D_e \): electron diffusion coefficient
- \(W_b \): base width
- \(p_{i0} = \frac{n_i^2}{N_{DB}} \): electron concentration in base (minority carrier)
- \(N_{DB} \): donor concentration in base
- \(n_i \): intrinsic carrier concentration (=10^{10} \text{ cm}^{-3} \text{ for Si})

- Due to higher mobility of electrons than holes, the npn transistor conducts higher current than the pnp for a given set of applied voltages.
Base Transit Time

- Forward transit time τ_F is the time constant associated with storing minority-carrier charge Q in base.

$$Q = qA n_{bo} \left[\exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right] \frac{W_B}{2}$$

$$i_r = \frac{qAD}{W_B} n_{bo} \left[\exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right]$$

$$\tau_F = \frac{Q}{i_r} = \frac{W_B^2}{2D_n} = \frac{W_B^2}{2\mu_n V_T}$$

Note: D_n and μ_n are related by Einstein relation: $\frac{D_n}{\mu_n} = \frac{kT}{q} = V_T$

- Transit time places upper limit on useful operating frequency of transistor.

Diffusion Capacitance

- For v_{BE} and hence i_C to change, charge stored in base region must also change.

- Diffusion capacitance in parallel with forward-biased base-emitter diode models the change in charge with v_{BE}.

$$C_D = \left. \frac{dQ}{dv_{BE}} \right|_{Q=0} = \frac{1}{V_T} \frac{qA n_{bo} W_B}{2} \exp \left(\frac{V_{BE}}{V_T} \right) = \frac{I_T}{V_T} \tau_F$$

- Since transport current normally represents collector current in forward-active region,

$$C_D = \frac{I_C}{V_T} \tau_F$$
Cutoff-Frequency, Transconductance and Transit Time

- Forward-biased diffusion and reverse-biased pn junction capacitances of the BJT cause current gain to be frequency-dependent.

- Unity gain frequency f_T (or gain-bandwidth product):
 \[\beta(f) = \frac{\beta_f}{\sqrt{1 + \left(\frac{f}{f_B}\right)^2}} \]
 where $f_B = \frac{f_T}{\beta_f}$ is the gain cutoff-frequency

- Transconductance is defined by:
 \[g_m = \left. \frac{dI_C}{dv_{BE}} \right|_{Q-P} = \frac{d}{dv_{BE}} \left[I_s \exp \left(\frac{v_{BE}}{V_T} \right) \right] = \frac{I_C}{V_T} \]

- Transit time is given by:
 \[\tau_F = \frac{C_D}{g_m} \Rightarrow \omega_T = 2\pi f_T = \frac{1}{\tau_T} = \frac{g_m}{C_D} \]

Early Effect and Early Voltage

\[i_C = \frac{2AD_n}{W_B W_L} \left[\exp \left(\frac{v_{BE}}{V_T} \right) - 1 \right] \]

As v_{CE} increases,
- BC junction is more reverse-biased
- i_c increases since $i_c \propto \frac{1}{W_B}$

This can be modeled by Early voltage:
\[i_C = I_s \exp \left(\frac{v_{BE}}{V_T} \right) \left[1 + \frac{v_{CE}}{V_T} \right] \]
BJT SPICE Model

- Besides capacitances associated with the physical structure, additional components are:
 - diode current i_s and substrate capacitance C_{JS} related to the large area pn junction that isolates the collector from the substrate and one transistor from the next.
- R_B is resistance between external base contact and intrinsic base region.
- Collector current must pass through R_C on its way to the active region of the collector-base junction.
- R_E models any extrinsic emitter resistance in device.

Typical Values of BJT SPICE Model Parameters

- Saturation Current $I_S = 3 \times 10^{-17}$ A
- Forward current gain $\beta_F = 100$
- Reverse current gain $\beta_R = 0.5$
- Forward Early voltage $V_{AF} = 75$ V
- Base resistance $R_B = 250$ Ω
- Collector Resistance $R_C = 50$ Ω
- Emitter Resistance $R_E = 1$ Ω
- Forward transit time $T_f = 0.15$ ns
- Reverse transit time $T_R = 15$ ns
BJT Bias: (1) Voltage Source to Base

\[I_C = I_S \exp \left(\frac{V_{BE}}{V_T} \right) \]

\(I_C \) varies exponentially with \(V_{BE} \) and \(V_T \)

Very sensitive to bias voltages and temperature
Also sensitive to \(I_S \)
Not desirable!

BJT Bias: (2) Bias with \(V_{CC} \) and Resistor

\[I_B = \frac{V_{CC} - V_{BE}}{R_B} \]

\[I_C = \beta I_B = \frac{V_{CC} - V_{BE}}{R_B / \beta} \]

Since \(V_{CC} \gg V_{BE} \), \(I_C \) is less sensitive to \(V_{BE} \)
It's also not sensitive to \(V_T \) or \(I_S \)
However, it is very sensitive to \(\beta \)
BJT Bias: (3) Bias with V_{CC} and R_B Plus R_E

KVL:

$V_{CC} = I_B R_B + v_{BE} + I_E R_E$

$= \frac{I_C}{\beta} R_B + v_{BE} + \frac{I_C}{\alpha} R_E$

$I_C = \frac{V_{CC} - v_{BE}}{\frac{R_B}{\beta} + \frac{R_E}{\alpha}}$

Since $V_{CC} \gg v_{BE}$, I_C is not sensitive to v_{BE}

$R_B \ll \frac{R_E}{\alpha}$. It's not sensitive to β

Both are good.

BJT Bias: (4) Four-Resistor Bias

$V_{EQ} = V_{CC} \frac{R_1}{R_1 + R_2}$

$R_{EQ} = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2}$
BJT Bias: (4) Four-Resistor Bias

\[I_C = \frac{V_{EQ} - V_{BE}}{R_{EQ} \beta + R_E} \]

Make \(V_{EQ} \gg V_{BE} \), Insensitive to \(V_{BE} \)

\[R_B \ll \frac{R_E}{\alpha} \], Insensitive to \(\alpha \)

Also, choose \(R_i \) and \(R_2 \) such that \(I_1, I_2 \gg I_B \)

Then \(I_1 = I_2 \)

The bias point (Q point) is independent of base current as well as current gain!

For design \(\Rightarrow \) choose \(I_1 = I_2 = 10 I_B \)

Four-Resistor Bias Example

Thevenin Equivalent of Base Bias Network

\[V_{EQ} = V_C \frac{R_i}{R_i + R_2} = 4 \text{ V} \]

\[\beta_F = 75 \]

\[V_{EQ} = I_B R_{EQ} + V_{BE} + I_E R_E \]

\[I_B = \frac{V_{EQ} - V_{BE}}{R_{EQ} + (\beta_F + 1) R_E} \]

\[I_B = \frac{4V - 0.7V}{12k\Omega + (76)16k\Omega} = 2.69 \mu A \]

\[I_C = \beta_F I_B = 202 \mu A \]

\[I_E = (\beta_F + 1) I_B = 204 \mu A \]

\[V_{CE} = V_C - I_C R_C - I_E R_E = 4.29 \text{ V} \]

Forward active region is correct

Q-point is (202 \(\mu A, 4.29 \text{ V} \))
Four-Resistor Bias Load-Line

- Load-line for the circuit is:

\[V_{CC} = V_{CC} - \left(R_e + \frac{R_e}{\alpha_F} \right) I_C = 12 - 38200I_C \]

The two points needed to plot the load line are (0, 12 V) and (314 µA, 0). The resulting load line is plotted on the common-emitter output characteristics.

- \(I_B = 2.7 \text{ µA} \) - the intersection of the corresponding characteristic with load line gives the Q-point: (200 µA, 4.3 V)

Four-Resistor Bias Design Guidelines

- Choose Thévenin equivalent base voltage

\[\frac{V_{CC}}{4} \leq V_{EQ} \leq \frac{V_{CC}}{2} \]

- Select \(R_1 \) to set \(I_1 = 9I_B \).

\[R_1 = \frac{V_{EQ}}{9I_B} \]

- Select \(R_2 \) to set \(I_2 = 10I_B \).

\[R_2 = \frac{V_{CC} - V_{EQ}}{10I_B} \]

- \(R_E \) is determined by \(V_{EQ} \) and the desired \(I_C \).

\[R_E = \frac{V_{EQ} - V_{BE}}{I_C} \]

- \(R_C \) is determined by desired \(V_{CE} \).

\[R_C \approx \frac{V_{CC} - V_{CE}}{I_C} - R_E \]
Four-Resistor Bias for BJT
Design Example

- Problem: Design 4-resistor bias circuit with given parameters.
- Given data: $I_C = 750 \, \mu A$, $\beta_F = 100$, $V_{CC} = 15 \, V$, $V_{CE} = 5 \, V$
- Assumptions: Forward-active operation region, $V_{BE} = 0.7 \, V$
- Analysis: Divide $(V_{CC} - V_{CE})$ equally between R_E and R_C. Thus, $V_E = 5 \, V$ and $V_C = 10 \, V$; Choose nearest 5% resistor values

\[
R_E = \frac{V_{CC} - V_C}{I_C} = 6.67 \, k\Omega \rightarrow 6.8 \, k\Omega \quad I_z = 10I_B = 75.0 \, \mu A
\]

\[
R_C = \frac{V_C}{I_{E}} = 6.60 \, k\Omega \rightarrow 6.8 \, k\Omega
\]

\[
V_E = V_E + V_{BE} = 5.7 \, V
\]

\[
I_B = \frac{I_C}{\beta_F} = 7.5 \, \mu A
\]

\[
I_z = 9I_B = 67.5 \, \mu A
\]

\[
R_i = \frac{V_B}{9I_B} = 84.4 \, k\Omega \rightarrow 82 \, k\Omega
\]

\[
R_z = \frac{V_{CC} - V_B}{10I_B} = 124 \, k\Omega \rightarrow 120 \, k\Omega
\]