Operational Amplifier Error Sources: dc Current and Output Range Limitations

- dc error sources result from the need to bias the internal circuits that form an operational amplifier and from mismatches between pairs of solid state devices in these circuits.

- These dc error sources include:
 - Input offset voltage V_{OS}
 - Input bias current I_B
 - Input offset current I_{OS}

- A real op amp obviously cannot deliver infinite output voltage or output current. Both are bounded:
 - $-V_{EE} \leq V_O \leq +V_{CC}$
 - $|I_O| \leq I_{max}$
To model the effects of offset voltage,

\[v_O = A(v_{ID} + V_{OS}) \]

With inputs being zero, the amplifier output rests at some non-zero dc voltage level.

The equivalent dc input offset voltage is

\[V_{OS} = \frac{V_O}{A} \]

The amplifier is connected as a voltage-follower to give output voltage that is approximately equal to the offset voltage.

Input-Offset Voltage (Example)

Problem: Find quiescent dc voltage at output.

Given data: \(R_1 = 1.2 \, \text{k}\Omega, R_2 = 99 \, \text{k}\Omega, |V_{OS}| \leq 3 \, \text{mV} \)

Assumptions: The op amp is ideal except for nonzero offset voltage.

- **Output voltage** is given by
 \[|V_{OS}| \leq \left(1 + \frac{99 \, \text{k}\Omega}{1.2 \, \text{k}\Omega} \right)(0.003) = 0.251 \, \text{V} \]

- The actual sign of \(V_{OS} \) is unknown as only an upper bound is given.

- Note: The offset voltage of most IC op amps can be manually adjusted by adding a potentiometer as shown.
Power Supply Rejection Ratio (PSRR)

- Power supply voltages change due to long-term drift or noise on supplies.
- Equivalent input offset voltage changes in response to power supply voltage changes.
- PSRR measures the ability of amplifier to reject power supply variations.
- PSRR indicates how offset voltage changes in response to change in power supply voltages.
 \[
 PSRR_+ = \frac{\Delta V_{OS}}{\Delta V_{CC}}
 \]
 \[
 PSRR_- = \frac{\Delta V_{OS}}{\Delta V_{EE}}
 \]
- Generally The “+” and “−” values of PSRR are generally different.
- Both CMRR and PSRR fall rapidly with frequency increase.

Input-Bias and Offset Currents

Bias currents \(I_{B1}\) and \(I_{B2}\) (base currents in BJTs or gate currents in MOSFETs or JFETs) are similar in value with directions depending on the internal amplifier circuitry.

\[
I_{OS} = I_{B1} - I_{B2}
\]

Sign of the offset current is unknown as only upper bound is given.

\[
V_O = I_{B2}R_2
\]

In the inverting amplifier shown, \(I_{B1}\) shorted out by the ground connection. Since, the inverting input is at virtual ground, the amplifier output is forced to supply \(I_{B2}\) through \(R_2\).

\[
V_O = I_{B2}R_2
\]
Bias Current Compensation

Bias current compensation resistor R_B is placed in series with the non-inverting input. Output due to I_{B1} alone is

$$V_O = -I_{B1}R_B \left(1 + \frac{R_2}{R_1} \right)$$

Since, the offset current is typically 5-10 times smaller than individual bias currents, the dc output voltage error can be reduced by using bias compensation.

Using superposition:

$$V_O^I = I_{B2}R_2 - I_{B1}R_B \left(1 + \frac{R_2}{R_1} \right)$$

$$V_O^F = (I_{B2} - I_{B1})R_2 = -I_{OS}R_2$$

for $R_B = \frac{R_1R_2}{R_1 + R_2}$

Bias Currents Errors in Integrator

At $t < 0$, the reset switch is closed, circuit becomes a voltage-follower with

$$V_O = V_{OS}$$

At $t = 0$, the reset switch is opened, and the circuit starts integrating its own offset voltage and bias current. Using analysis by superposition:

$$v(t) = V_{OS} + \frac{V}{RC}t + \frac{I_{B2}}{C}$$

The output becomes a ramp with slope determined by V_{OS} and I_{B2}, and eventually saturates at one of the power supplies.
Output Voltage and Current Limits

Practical op amps have limited output voltage and current ranges.

Voltage: Typically limited to several volts less than power supply span.

Current: Limited by additional circuits (to limit power dissipation or protect against accidental short circuits).

Current limit is often specified as minimum load resistance that the amplifier can drive with a given voltage swing. For example,

\[
|i_o| \leq \frac{10V}{5k\Omega} = 2\ mA
\]

Output Voltage and Current Limits Example

- Assumptions: Ideal op amp except for limited output current.
- Analysis:

\[
R_{EQ} = R_1 \| (R_2 + R_i)
\]

For the inverting amplifier,

\[
R_{EQ} = R_2
\]

- Problem: Design an inverting amp with given specifications.
- Given Data: \(A_v = 20\ dB\), \(R_i \geq 5\ k\Omega,\ v_o \leq 10\ V\).
 Magnitude of output current less than 2.5 mA.

\[
\begin{align*}
R_{EQ} &= R_i \left[\frac{10V}{2.5mA} \right] = 4\ k\Omega \\
&= 4k\Omega \\
\text{Since} \ R_i \geq 5\ k\Omega, \ R_2 \geq 20\ k\Omega \\
A_v = 20\ dB \quad \rightarrow \quad \frac{R_2}{R_i} = 10 \\
\text{Choose} \ R_i = 10\ k\Omega \text{ and } R_2 = 100\ k\Omega \\
\text{to provide an input resistance of } 10\ k\Omega. \\
\text{The maximum output current will be:} \\
|i_o| \leq \frac{10V}{100k\Omega} + \frac{10V}{5k\Omega} = 2.1\ mA < 2.5\ mA
\]
Finite Common-Mode Rejection Ratio (CMRR)

A real amplifier responds to signal common to both inputs, called common-mode input voltage. In general,

\[v_O = A(v_1 - v_2) + A_{cm}\left(\frac{v_1 + v_2}{2}\right) \]

Differential-mode Input: \[v_{id} = v_1 - v_2 \]

\[v_O = A(v_{id}) + A_{cm}(v_{ic}) \]

Common-mode Input: \[v_{ic} = \frac{v_1 + v_2}{2} \]

Finite Common-Mode Rejection Ratio CMRR

An ideal amplifier has \(A_{cm} = 0 \), but for a real amplifier,

\[v_O = A\left(v_{id} + \frac{A_{cm}v_{ic}}{A}\right) = A\left(v_{id} + \frac{v_{ic}}{CMRR}\right) \]

\[CMRR = \frac{A}{A_{cm}} \]

The actual sign of CMRR is not known before hand as only a lower bound is typically provided.
Finite CMRR Example

- Problem: Find the error introduced by finite CMRR.
- Given Data: \(A = 2500, \) CMRR = 80 dB, \(v_1 = 5.001 \text{ V}, \) \(v_2 = 4.999 \text{ V} \)
- Assumptions: Op amp is ideal except for finite gain and CMRR. The CMRR of 80 dB corresponds to CMRR of \(\pm 10^4 \). Assume CMRR = \(+10^4 \)
- Analysis:

\[
\begin{align*}
v_{id} &= v_1 - v_2 = 0.002 \text{ V} \\
v_{ic} &= \frac{v_1 + v_2}{2} = 5.00 \text{ V} \\
v_o &= A \left(v_{id} + \frac{v_{ic}}{\text{CMRR}} \right) = 2500 \left(0.002 + \frac{5.00}{10000} \right) = 6.25 \text{ V} \\
A_m &= \frac{A}{\text{CMRR}} = \frac{2500}{10000} = 0.25 \text{ or -12 dB}
\end{align*}
\]

- The error introduced by the common-mode input is 25% of the differential input voltage.

Finite CMRR Voltage Follower Gain Error

Ideal gain for voltage follower is unity, gain error

\[
GE = 1 - A = \frac{1 - A}{1 + A \left(1 - \frac{1}{2 \text{CMRR}} \right)}
\]

since both \(A \) and \(\text{CMRR} >> 1 \)

The first term is due to finite amplifier gain; the second term shows that CMRR may introduce an even larger error.
Common-mode Input Resistance

When a purely common-mode signal v_{ic} is applied to the amplifier input ($v_{id} = 0$), total resistance presented to source is $2R_{ic} || 2R_{ic} = R_{ic}$ where R_{ic} is the common-mode input resistance.

Normally, $R_{ic} >> R_{id}$.

For a purely differential-mode input signal, input resistance is $R_{in} = R_{id} || 4R_{ic}$