cs61c: great ideas in computer architecture

lecture 18: amdahl’s law and data-level parallelism

instructor: sagar karandikar
sagark@eecs.berkeley.edu

http://inst.eecs.berkeley.edu/~cs61c
Review

• Performance
 – Bandwidth, measured in tasks/second
 – Latency, time to complete one task
• “Iron Law” of computer performance:
 – Secs/program = insts/program * clocks/inst * secs/clock
• IEEE-754 Floating-Point Standard
 – Sign-magnitude significand* 2 ^ biased exponent
 – Special values, NaN, Infinity, Denormals
New-School Machine Structures (It’s a bit more complicated!)

- **Parallel Requests**
 Assigned to computer
 e.g., Search “Katz”

- **Parallel Threads**
 Assigned to core
 e.g., Lookup, Ads

- **Parallel Instructions**
 >1 instruction @ one time
 e.g., 5 pipelined instructions

- **Parallel Data**
 >1 data item @ one time
 e.g., Add of 4 pairs of words

- **Hardware descriptions**
 All gates @ one time

- **Programming Languages**

Today’s Lecture

Software

Hardware

- **Harness Parallelism & Achieve High Performance**
 - Warehouse Scale Computer
 - Core
 - Memory
 - Input/Output
 - Instruction Unit(s)
 - Cache Memory
 - Logical Gates

Computer

- **Smart Phone**
 - Core
 - (Cache)
 - Functional Unit(s)
 - A₀+B₀ A₁+B₁ A₂+B₂ A₃+B₃
Using Parallelism for Performance

• Two basic ways:
 – Multiprogramming
 • run multiple independent programs in parallel
 • “Easy”
 – Parallel computing
 • run one program faster
 • “Hard”

• We’ll focus on parallel computing for next few lectures
Single-Instruction/Single-Data Stream (SISD)

- Sequential computer that exploits no parallelism in either the instruction or data streams. Examples of SISD architecture are traditional uniprocessor machines.
Single-Instruction/Multiple-Data Stream (SIMD or “sim-dee”)

- SIMD computer exploits multiple data streams against a single instruction stream to operations that may be naturally parallelized, e.g., Intel SIMD instruction extensions or NVIDIA Graphics Processing Unit (GPU)
Multiple-Instruction/Multiple-Data Streams (MIMD or “mim-dee”)

- Multiple autonomous processors simultaneously executing different instructions on different data.
 - MIMD architectures include multicore and Warehouse-Scale Computers
Multiple-Instruction/Single-Data Stream (MISD)

- Multiple-Instruction, Single-Data stream computer that exploits multiple instruction streams against a single data stream.
 - Rare, mainly of historical interest only
Flynn* Taxonomy, 1966

<table>
<thead>
<tr>
<th>Instruction Streams</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>SISD: Intel Pentium 4</td>
<td>SIMD: SSE instructions of x86</td>
</tr>
<tr>
<td>Multiple</td>
<td>MISD: No examples today</td>
<td>MIMD: Intel Xeon e5345 (Clovertown)</td>
</tr>
</tbody>
</table>

- In 2013, SIMD and MIMD most common parallelism in architectures – usually both in same system!
- Most common parallel processing programming style: Single Program Multiple Data (“SPMD”)
 - Single program that runs on all processors of a MIMD
 - Cross-processor execution coordination using synchronization primitives
- SIMD (aka hw-level *data parallelism*): specialized function units, for handling lock-step calculations involving arrays
 - Scientific computing, signal processing, multimedia (audio/video processing)

Prof. Michael Flynn, Stanford
Big Idea: Amdahl’s (Heartbreaking) Law

• Speedup due to enhancement E is

\[
\text{Speedup w/ } E = \frac{\text{Exec time w/o E}}{\text{Exec time w/ E}}
\]

• Suppose that enhancement E accelerates a fraction F (F <1) of the task by a factor S (S>1) and the remainder of the task is unaffected.

\[
\text{Execution Time w/ E} = \text{Execution Time w/o E} \times [(1-F) + \frac{F}{S}]
\]

\[
\text{Speedup w/ E} = \frac{1}{[(1-F) + \frac{F}{S}]}
\]
Big Idea: Amdahl’s Law

Speedup =

Example: the execution time of half of the program can be accelerated by a factor of 2. What is the program speed-up overall?
Big Idea: Amdahl’s Law

\[
\text{Speedup} = \frac{1}{(1 - F) + \frac{F}{S}}
\]

Example: the execution time of half of the program can be accelerated by a factor of 2. What is the program speed-up overall?

\[
\frac{1}{0.5 + 0.5} = \frac{1}{0.5 + 0.25} = 1.33
\]
Example #1: Amdahl’s Law

Speedup $w/ E = 1 / [(1-F) + F/S]$

- Consider an enhancement which runs 20 times faster but which is only usable 25% of the time

 Speedup $w/ E = 1/(.75 + .25/20) = 1.31$

- What if its usable only 15% of the time?

 Speedup $w/ E = 1/(.85 + .15/20) = 1.17$

- Amdahl’s Law tells us that to achieve linear speedup with 100 processors, none of the original computation can be scalar!

- To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less

 Speedup $w/ E = 1/(.001 + .999/100) = 90.99$
If the portion of the program that can be parallelized is small, then the speedup is limited.

The non-parallel portion limits the performance.
Strong and Weak Scaling

- To get good speedup on a parallel processor while keeping the problem size fixed is harder than getting good speedup by increasing the size of the problem.
 - **Strong scaling**: when speedup can be achieved on a parallel processor without increasing the size of the problem
 - **Weak scaling**: when speedup is achieved on a parallel processor by increasing the size of the problem proportionally to the increase in the number of processors

- **Load balancing** is another important factor: every processor doing same amount of work
 - Just one unit with twice the load of others cuts speedup almost in half
Clickers/Peer Instruction

Suppose a program spends 80% of its time in a square root routine. How much must you speedup square root to make the program run 5 times faster?

\[
\text{Speedup w/ E} = \frac{1}{\left[(1 - F) + \frac{F}{S} \right]}
\]

A: 5
B: 16
C: 20
D: 100
E: None of the above
Administrivia

• Project 3-1 Out
 – Last week, we built a CPU together, this week, you start building your own!

• HW4 Out - Caches

• Guerrilla Section on Pipelining, Caches on Thursday, 5-7pm, Woz
Administrivia

• Midterm 2 is next Tuesday
 – In this room, at this time
 – Two double-sided 8.5”x11” handwritten cheatsheets
 – We’ll provide a MIPS green sheet
 – No electronics
 – Covers up to and including 07/21 lecture
 – Review session is Friday, 7/24 from 1-4pm in HP Aud.
Break
SIMD Architectures

- **Data parallelism**: executing same operation on multiple data streams

- Example to provide context:
 - Multiplying a coefficient vector by a data vector (e.g., in filtering)

 \[y[i] := c[i] \times x[i], \ 0 \leq i < n \]

- Sources of performance improvement:
 - One instruction is fetched & decoded for entire operation
 - Multiplications are known to be independent
 - Pipelining/concurrency in memory access as well
Intel “Advanced Digital Media Boost”

• To improve performance, Intel’s SIMD instructions
 – Fetch one instruction, do the work of multiple instructions
First SIMD Extensions: MIT Lincoln Labs TX-2, 1957
Intel SIMD Extensions

• MMX 64-bit registers, reusing floating-point registers [1992]
• SSE2/3/4, new 128-bit registers [1999]
• AVX, new 256-bit registers [2011]
 – Space for expansion to 1024-bit registers
XMM Registers

<table>
<thead>
<tr>
<th>127</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMM7</td>
<td></td>
</tr>
<tr>
<td>XMM6</td>
<td></td>
</tr>
<tr>
<td>XMM5</td>
<td></td>
</tr>
<tr>
<td>XMM4</td>
<td></td>
</tr>
<tr>
<td>XMM3</td>
<td></td>
</tr>
<tr>
<td>XMM2</td>
<td></td>
</tr>
<tr>
<td>XMM1</td>
<td></td>
</tr>
<tr>
<td>XMM0</td>
<td></td>
</tr>
</tbody>
</table>

- Architecture extended with eight 128-bit data registers: XMM registers
 - x86 64-bit address architecture adds 8 additional registers (XMM8 – XMM15)
Intel Architecture SSE2+ 128-Bit SIMD Data Types

- Note: in Intel Architecture (unlike MIPS) a word is 16 bits
 - Single-precision FP: Double word (32 bits)
 - Double-precision FP: Quad word (64 bits)

Fundamental 128-Bit Packed SIMD Data Types

<table>
<thead>
<tr>
<th>Packed Bytes</th>
<th>16 / 128 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Packed Words</td>
<td>8 / 128 bits</td>
</tr>
<tr>
<td>Packed Doublewords</td>
<td>4 / 128 bits</td>
</tr>
<tr>
<td>Packed Quadwords</td>
<td>2 / 128 bits</td>
</tr>
</tbody>
</table>
SSE/SSE2 Floating Point Instructions

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV{A/U} {SS/PS/SD/PD} xmm, mem/xmm</td>
<td>ADD{SS/PS/SD/PD} xmm, mem/xmm</td>
<td>CMP{SS/PS/SD/PD}</td>
</tr>
<tr>
<td></td>
<td>SUB{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td>MOV {H/L} {PS/PD} xmm, mem/xmm</td>
<td>MUL{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIV{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SQRT{SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAX {SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIN{SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
</tbody>
</table>

xmm: one operand is a 128-bit SSE2 register
mem/xmm: other operand is in memory or an SSE2 register
{SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register
{PS} Packed Single precision FP: four 32-bit operands in a 128-bit register
{SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register
{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
{A} 128-bit operand is aligned in memory
{U} means the 128-bit operand is unaligned in memory
{H} means move the high half of the 128-bit operand
{L} means move the low half of the 128-bit operand
Packed and Scalar Double-Precision Floating-Point Operations

Packed

Scalar

X1 X0

Y1 Y0

OP OP

X1 OP Y1 X0 OP Y0

X1

Y1

OP

X1

X0 OP Y0
Example: SIMD Array Processing

for each \(f \) in array
 \(f = \sqrt{f} \)

for each \(f \) in array

 load \(f \) to the floating-point register
 calculate the square root
 write the result from the register to memory

for each 4 members in array

 load 4 members to the SSE register
 calculate 4 square roots in one operation
 store the 4 results from the register to memory

SIMD style
Data-Level Parallelism and SIMD

• SIMD wants adjacent values in memory that can be operated in parallel
• Usually specified in programs as loops
 \[
 \text{for} (i=1000; i>0; i=i-1) \\
 x[i] = x[i] + s;
 \]
• How can reveal more data-level parallelism than available in a single iteration of a loop?
 • *Unroll loop* and adjust iteration rate
Assumptions:
- $t1$ is initially the address of the element in the array with the highest address
- $f0$ contains the scalar value s
- $8(t2)$ is the address of the last element to operate on

CODE:
Loop: 1. l.d $f2,0(t1)$; $f2$=array element
2. add.d $f10,f2,f0$; add s to $f2$
3. s.d $f10,0(t1)$; store result
4. addui $t1,t1,#-8$; decrement pointer 8 byte
5. bne $t1,t2,Loop$;repeat loop if $t1 != t2$
Loop Unrolled

Loop:

\[
\begin{align*}
&\text{l.d \ $f2,0($t1)} \\
&\text{add.d \ $f10,$f2,$f0} \\
&\text{s.d \ $f10,0($t1)} \\
&\text{l.d \ $f4,-8($t1)} \\
&\text{add.d \ $f12,$f4,$f0} \\
&\text{s.d \ $f12,-8($t1)} \\
&\text{l.d \ $f6,-16($t1)} \\
&\text{add.d \ $f14,$f6,$f0} \\
&\text{s.d \ $f14,-16($t1)} \\
&\text{l.d \ $f8,-24($t1)} \\
&\text{add.d \ $f16,$f8,$f0} \\
&\text{s.d \ $f16,-24($t1)} \\
&\text{addui \ $t1,$t1,#-32} \\
&\text{bne \ $t1,$t2,Loop}
\end{align*}
\]

NOTE:
1. Only 1 Loop Overhead every 4 iterations
2. This unrolling works if $\text{loop_limit(}\text{mod\ 4}) = 0$
3. Using different registers for each iteration eliminates data hazards in pipeline
Loop Unrolled Scheduled

Loop:

l.d $f2,0($t1)
l.d $f4,-8($t1)
l.d $f6,-16($t1)
l.d $f8,-24($t1)
add.d $f10,$f2,$f0
add.d $f12,$f4,$f0
add.d $f14,$f6,$f0
add.d $f16,$f8,$f0
s.d $f10,0($t1)
s.d $f12,-8($t1)
s.d $f14,-16($t1)
s.d $f16,-24($t1)
addui $t1,$t1,#-32
bne $t1,$t2,Loop

4 Loads side-by-side: Could replace with 4-wide SIMD Load
4 Adds side-by-side: Could replace with 4-wide SIMD Add
4 Stores side-by-side: Could replace with 4-wide SIMD Store
Loop Unrolling in C

• Instead of compiler doing loop unrolling, could do it yourself in C

  ```c
  for(i=1000; i>0; i=i-1)
      x[i] = x[i] + s;
  ```

• Could be rewritten

  ```c
  for(i=1000; i>0; i=i-4) {
      x[i] = x[i] + s;
      x[i-1] = x[i-1] + s;
      x[i-2] = x[i-2] + s;
      x[i-3] = x[i-3] + s;
  }
  ```

What is downside of doing it in C?
Generalizing Loop Unrolling

- A loop of \(n \) iterations
- \(k \) copies of the body of the loop
- Assuming \((n \mod k) \neq 0\)

Then we will run the loop with 1 copy of the body \((n \mod k)\) times and with \(k \) copies of the body \(\text{floor}(n/k) \) times
Example: Add Two Single-Precision Floating-Point Vectors

Computation to be performed:

\[
\begin{align*}
vec_{\text{res}.x} &= v1.x + v2.x; \\
vec_{\text{res}.y} &= v1.y + v2.y; \\
vec_{\text{res}.z} &= v1.z + v2.z; \\
vec_{\text{res}.w} &= v1.w + v2.w;
\end{align*}
\]

SSE Instruction Sequence:

(Note: Destination on the right in x86 assembly)

\[
\begin{align*}
\text{movaps address-of-v1, } &\%\text{xmm0} \\
&\text{ // } v1.w \mid v1.z \mid v1.y \mid v1.x \rightarrow \%\text{xmm0} \\
\text{addps address-of-v2, } &\%\text{xmm0} \\
&\text{ // } v1.w+v2.w \mid v1.z+v2.z \mid v1.y+v2.y \mid v1.x+v2.x \rightarrow \%\text{xmm0} \\
\text{movaps } &\%\text{xmm0, address-of-vec_res}
\end{align*}
\]

mov a ps: move from mem to XMM register, memory aligned, packed single precision
add ps: add from mem to XMM register, packed single precision
mov a ps: move from XMM register to mem, memory aligned, packed single precision
Break
Intel SSE Intrinsics

• Intrinsics are C functions and procedures for inserting assembly language into C code, including SSE instructions
 – With intrinsics, can program using these instructions indirectly
 – One-to-one correspondence between SSE instructions and intrinsics
Example SSE Intrinsics

Instrinsics:

- Vector data type: `_m128d`
- Load and store operations:
 - `_mm_load_pd` MOVAPD/aligned, packed double
 - `_mm_store_pd` MOVAPD/aligned, packed double
 - `_mm_loadu_pd` MOVUPD/unaligned, packed double
 - `_mm_storeu_pd` MOVUPD/unaligned, packed double
- Load and broadcast across vector
 - `_mm_load1_pd` MOVSD + shuffling/duplicating
- Arithmetic:
 - `_mm_add_pd` ADDPD/add, packed double
 - `_mm_mul_pd` MULPD/multiple, packed double
Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:

\[C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j} \]

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\times
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
=
\begin{bmatrix}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{bmatrix}
\]

\[
C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} \\
C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} \\
C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 3 \\
2 & 4
\end{bmatrix}
=
\begin{bmatrix}
1 & 3 \\
2 & 4
\end{bmatrix}
\]

\[
C_{1,1} = 1 \times 1 + 0 \times 2 = 1 \\
C_{1,2} = 1 \times 3 + 0 \times 4 = 3 \\
C_{2,1} = 0 \times 1 + 1 \times 2 = 2 \\
C_{2,2} = 0 \times 3 + 1 \times 4 = 4
\]
Example: 2 x 2 Matrix Multiply

- Using the XMM registers
 - 64-bit/double precision/two doubles per XMM reg

\[
\begin{align*}
\mathbf{C}_1 & \quad \mathbf{C}_2 \\
\mathbf{A} & \\
\mathbf{B}_1 & \quad \mathbf{B}_2 \\
\end{align*}
\]

Stored in memory in Column order

\[
\begin{bmatrix}
\mathbf{C}_{1,1} & \mathbf{C}_{1,2} \\
\mathbf{C}_{2,1} & \mathbf{C}_{2,2} \\
\mathbf{C}_1 & \mathbf{C}_2 \\
\end{bmatrix}
\]
Example: 2 x 2 Matrix Multiply

• Initialization

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Example: 2 x 2 Matrix Multiply

- **Initialization**

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix} \times
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix} =
\begin{bmatrix}
C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\end{bmatrix}
\]

\[
\begin{array}{c|c}
C_1 & 0 & 0 \\
\hline
C_2 & 0 & 0 \\
\end{array}
\]

- **I = 1**

\[
\begin{array}{c|c|c}
A & A_{1,1} & A_{2,1} \\
\hline
B_1 & B_{1,1} & B_{1,1} \\
\hline
B_2 & B_{1,2} & B_{1,2} \\
\end{array}
\]

- **_mm_load_pd**: Load 2 doubles into XMM reg, Stored in memory in Column order

- **_mm_load1_pd**: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)
Example: 2 x 2 Matrix Multiply

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\times
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
= \begin{bmatrix}
C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\end{bmatrix}
\]

- First iteration intermediate result

| C1 | 0+A_{1,1}B_{1,1} | 0+A_{2,1}B_{1,1} |
| C2 | 0+A_{1,1}B_{1,2} | 0+A_{2,1}B_{1,2} |

c1 = _mm_add_pd(c1, _mm_mul_pd(a,b1));
c2 = _mm_add_pd(c2, _mm_mul_pd(a,b2));

SSE instructions first do parallel multiplies and then parallel adds in XMM registers

- I = 1

A

| A_{1,1} | A_{2,1} |

_B1

| B_{1,1} | B_{1,1} |
_B2

| B_{1,2} | B_{1,2} |

_mm_load_pd: Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)
Example: 2 x 2 Matrix Multiply

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\times
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
= \begin{bmatrix}
C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} \\
C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} \\
C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\end{bmatrix}
\]

- First iteration intermediate result

\[
\begin{align*}
C_1 &= \begin{bmatrix}
0 + A_{1,1}B_{1,1} & 0 + A_{2,1}B_{1,1} \\
0 + A_{1,1}B_{1,2} & 0 + A_{2,1}B_{1,2}
\end{bmatrix} \\
C_2 &= \begin{bmatrix}
0 + A_{1,1}B_{1,1} & 0 + A_{2,1}B_{1,1} \\
0 + A_{1,1}B_{1,2} & 0 + A_{2,1}B_{1,2}
\end{bmatrix}
\end{align*}
\]

\[c_1 = _mm_add_pd(c_1, _mm_mul_pd(a, b_1));\]
\[c_2 = _mm_add_pd(c_2, _mm_mul_pd(a, b_2));\]
SSE instructions first do parallel multiplies and then parallel adds in XMM registers

- \(I = 2 \)

\[
\begin{align*}
A &= \begin{bmatrix}
A_{1,2} & A_{2,2}
\end{bmatrix} \\
B_1 &= \begin{bmatrix}
B_{2,1} & B_{2,1}
\end{bmatrix} \\
B_2 &= \begin{bmatrix}
B_{2,2} & B_{2,2}
\end{bmatrix}
\end{align*}
\]

_[mm_load_pd]: Stored in memory in Column order

_[mm_load1_pd]: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)
Example: 2 x 2 Matrix Multiply

• Second iteration intermediate result

<table>
<thead>
<tr>
<th></th>
<th>C1,1</th>
<th>C2,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>A1,1B1,1 + A1,2B2,1</td>
<td>A2,1B1,1 + A2,2B2,2</td>
</tr>
<tr>
<td>C2</td>
<td>A1,1B1,2 + A1,2B2,2</td>
<td>A2,1B1,2 + A2,2B2,2</td>
</tr>
</tbody>
</table>

\[\begin{align*}
C_{1,1} & = _\text{mm_add_pd}(c1, _\text{mm_mul_pd}(a,b1)) ; \\
C_{2,1} & = _\text{mm_add_pd}(c2, _\text{mm_mul_pd}(a,b2)) ; \\
\text{SSE instructions first do parallel multiplies and then parallel adds in XMM registers}
\end{align*} \]

• \(l = 2 \)

A

\[\begin{align*}
A_{1,2} & = _\text{mm_load_pd} ; \\
A_{2,2} & = _\text{mm_load_pd} ; \\
\text{Stored in memory in Column order}
\end{align*} \]

B1

\[\begin{align*}
B_{2,1} & = _\text{mm_load1_pd} ; \\
B_{2,1} & = _\text{mm_load1_pd} ; \\
\text{SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)}
\end{align*} \]
Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:

\[C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j} \]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}
\times
\begin{bmatrix}
1 & 3 \\
2 & 4 \\
\end{bmatrix}
=
\begin{bmatrix}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2} \\
\end{bmatrix}
\]

- \[C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} \]
- \[C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \]
- \[C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} \]
- \[C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2} \]

\[
\begin{bmatrix}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2} \\
\end{bmatrix}
=
\begin{bmatrix}
1 & 3 \\
2 & 4 \\
\end{bmatrix}
\]

\[
C_{1,1} = 1 \times 1 + 0 \times 2 = 1 \\
C_{1,2} = 1 \times 3 + 0 \times 4 = 3 \\
C_{2,1} = 0 \times 1 + 1 \times 2 = 2 \\
C_{2,2} = 0 \times 3 + 1 \times 4 = 4 \\
\]
#include <stdio.h>

// header file for SSE compiler intrinsics
#include <emmintrin.h>

// NOTE: vector registers will be represented in comments as v1 = [a | b]
// where v1 is a variable of type __m128d and a, b are doubles

int main(void) {
 // allocate A,B,C aligned on 16-byte boundaries
 double B[4] __attribute__((aligned (16)));
 double C[4] __attribute__((aligned (16)));
 int lda = 2;
 int i = 0;

 // declare several 128-bit vector variables
 __m128d c1,c2,a,b1,b2;

 // Initialize A, B, C for example
 /* A = (note column order!)
 1 0
 0 1 */

 /* B = (note column order!)
 1 3
 2 4 */
 B[0] = 1.0; B[1] = 2.0; B[2] = 3.0; B[3] = 4.0;

 /* C = (note column order!)
 0 0
 0 0 */
 C[0] = 0.0; C[1] = 0.0; C[2] = 0.0; C[3] = 0.0;
Example: 2 x 2 Matrix Multiply
(Part 2 of 2)

// used aligned loads to set
// c1 = [c_11 | c_21]
c1 = _mm_load_pd(C+0*lda);
// c2 = [c_12 | c_22]
c2 = _mm_load_pd(C+1*lda);

for (i = 0; i < 2; i++) {
 /* a =
 i = 0: [a_11 | a_21]
 i = 1: [a_12 | a_22]
 */
a = _mm_load_pd(A+i*lda);
 /* b1 =
 i = 0: [b_11 | b_11]
 i = 1: [b_21 | b_21]
 */
b1 = _mm_load1_pd(B+i+0*lda);
 /* b2 =
 i = 0: [b_12 | b_12]
 i = 1: [b_22 | b_22]
 */
b2 = _mm_load1_pd(B+i+1*lda);
 /* c1 =
 i = 0: [c_11 + a_11*b_11 | c_21 + a_21*b_11]
 i = 1: [c_11 + a_21*b_21 | c_21 + a_22*b_21]
 */
c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
 /* c2 =
 i = 0: [c_12 + a_11*b_12 | c_22 + a_21*b_12]
 i = 1: [c_12 + a_21*b_22 | c_22 + a_22*b_22]
 */
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
}

// store c1,c2 back into C for completion
_mm_store_pd(C+0*lda,c1);
_mm_store_pd(C+1*lda,c2);

// print C
printf("%g,%g\n%g,%g",C[0],C[2],C[1],C[3]);
return 0;
Inner loop from gcc –O -S

L2: movapd (%rax,%rsi), %xmm1 //Load aligned A[i,i+1]->m1
 movddup (%rdx), %xmm0 //Load B[j], duplicate->m0
 mulpd %xmm1, %xmm0 //Multiply m0*m1->m0
 addpd %xmm0, %xmm3 //Add m0+m3->m3
 movddup $16(%rdx), %xmm0 //Load B[j+1], duplicate->m0
 mulpd %xmm0, %xmm1 //Multiply m0*m1->m1
 addpd %xmm1, %xmm2 //Add m1+m2->m2
 addq $16, %rax // rax+16 -> rax (i+=2)
 addq $8, %rdx // rdx+8 -> rdx (j+=1)
 cmpq $32, %rax // rax == 32?
 jne L2 // jump to L2 if not equal
movapd %xmm3, (%rcx) //store aligned m3 into C[k,k+1]
movapd %xmm2, (%rdi) //store aligned m2 into C[l,l+1]
And in Conclusion, ...

- Amdahl’s Law: Serial sections limit speedup
- Flynn Taxonomy
- Intel SSE SIMD Instructions
 - Exploit data-level parallelism in loops
 - One instruction fetch that operates on multiple operands simultaneously
 - 128-bit XMM registers
- SSE Instructions in C
 - Embed the SSE machine instructions directly into C programs through use of intrinsics
 - Achieve efficiency beyond that of optimizing compiler