CS 61C: Great Ideas in Computer Architecture

Dependability - ECC

Nicholas Weaver & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/
Great Idea #6: Dependability via Redundancy

• Applies to everything from datacenters to memory
 – Redundant datacenters so that can lose 1 datacenter but Internet service stays online
 – Redundant routes so can lose nodes but Internet doesn’t fail
 • Or at least can recover quickly...
 – Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)
 – Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC Memory)
Dependability Corollary: Fault Detection

• The ability to determine that something is wrong is often the key to redundancy
 – "Work correctly or fail" is far easier to deal with than "May work incorrectly on failure"

• Error detection is generally a necessary prerequisite to error correction
 – And as we saw with rowhammer: Errors aren't just errors, but can be potential avenues for exploitation!
Dependability via Redundancy: Time vs. Space

- **Spatial Redundancy** – replicated data or check information or hardware to handle hard and soft (transient) failures

- **Temporal Redundancy** – redundancy in time (retry) to handle soft (transient) failures
 - "Insanity overcoming soft failures is repeatedly doing the same thing and expecting different results"
Dependability Measures

- Reliability: Mean Time To Failure (MTTF)
- Service interruption: Mean Time To Repair (MTTR)
- Mean time between failures (MTBF)
 - MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
 - Increase MTTF: More reliable hardware/software + Fault Tolerance
 - Reduce MTTR: improved tools and processes for diagnosis and repair
Availability Measures

• Availability = MTTF / (MTTF + MTTR) as %
 – MTTF, MTBF usually measured in hours
• Since hope rarely down, shorthand is “number of 9s of availability per year”
• 1 nine: 90% => 36 days of repair/year
• 2 nines: 99% => 3.6 days of repair/year
• 3 nines: 99.9% => 526 minutes of repair/year
• 4 nines: 99.99% => 53 minutes of repair/year
• 5 nines: 99.999% => 5 minutes of repair/year
Reliability Measures

• Another is average number of failures per year: **Annualized Failure Rate (AFR)**
 – E.g., 1000 disks with 100,000 hour MTTF
 – 365 days * 24 hours = 8760 hours
 – (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed disks per year on average
 – 87.6/1000 = 8.76% annual failure rate

• Google’s 2007 study* found that actual AFRs for individual drives ranged from 1.7% for first year drives to over 8.6% for three-year old drives

*research.google.com/archive/disk_failures.pdf
The "Bathtub Curve"

- Often failures follow the "bathtub curve"
- Brand new devices may fail
 - "Crib death"
- Old devices fail
- Random failure in between

https://upload.wikimedia.org/wikipedia/commons/7/78/Bathtub_curve.svg
Dependability Design Principle

• Design Principle: No single points of failure
 – “Chain is only as strong as its weakest link”

• Dependability Corollary of Amdahl’s Law
 – Doesn’t matter how dependable you make one portion of system
 – Dependability limited by part you do not improve

• + Murphy's Law
 – If you have one thing different, that is the one thing that will fail!
Error Detection/Correction Codes

- Memory systems generate errors (accidentally flipped-bits)
 - DRAMs store very little charge per bit
 - “Soft” errors occur occasionally when cells are struck by alpha particles or other environmental upsets
 - “Hard” errors can occur when chips permanently fail
 - Problem gets worse as memories get denser and larger
- Memories protected against failures with EDC/ECC
- Extra bits are added to each data-word
 - Used to detect and/or correct faults in the memory system
 - Each data word value mapped to unique code word
 - A fault changes valid code word to invalid one, which can be detected
Block Code Principles

• Hamming distance = difference in # of bits
• $p = 0\overset{11}{011}, q = 0\overset{011}{11},$ Ham. distance $(p,q) = 2$
• $p = 011011,$
 $q = 110001,$
 distance $(p,q) =$?
• Can think of extra bits as creating a code with the data
• What if minimum distance between members of code is 2 and get a 1-bit error?

Richard Hamming, 1915-98
Turing Award Winner
Parity: Simple Error-Detection Coding

• Each data value, before it is written to memory is “tagged” with an extra bit to force the stored word to have even parity:

\[
b_7b_6b_5b_4b_3b_2b_1b_0
\]

• Each word, as it is read from memory is “checked” by finding its parity (including the parity bit):

\[
b_7b_6b_5b_4b_3b_2b_1b_0 \quad p
\]

• Minimum Hamming distance of parity code is 2

• A non-zero parity check indicates an error occurred:
 – 2 errors (on different bits) are not detected
 – nor any even number of errors, just odd numbers of errors are detected
Parity Example

• Data 0101 0101
• 4 ones, even parity now
• Write to memory: 0101 0101 0 to keep parity even
• Data 0101 0111
• 5 ones, odd parity now
• Write to memory: 0101 0111 1 to make parity even
• Read from memory 0101 0101 0
• 4 ones => even parity, so no error
• Read from memory 1101 0101 0
• 5 ones => odd parity, so error
• What if error in parity bit?
Suppose Want to Correct 1 Error?

• Richard Hamming came up with simple to understand mapping to allow Error Correction at minimum distance of 3
 – Single error correction, double error detection
• Called “Hamming ECC”
 – Worked weekends on relay computer with unreliable card reader, frustrated with manual restarting
 – Got interested in error correction; published 1950
Detecting/Correcting Code Concept

Space of possible bit patterns (2^N)

- Error changes bit pattern to non-code

Sparse population of code words ($2^M << 2^N$)
 - with identifiable signature

• **Detection**: bit pattern fails codeword check
• **Correction**: map to nearest valid code word
Hamming Distance: 8 code words
Hamming Distance 2: Detection

Detect Single Bit Errors

- No 1 bit error goes to another valid codeword
- ½ codewords are valid
 - This is parity
Hamming Distance 3: Correction
Correct Single Bit Errors, Detect Double Bit Errors

• No 2 bit error goes to another valid codeword; 1 bit error near
• 1/4 codewords are valid
Graphic of Hamming Code

<table>
<thead>
<tr>
<th>Bit position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoded data bits</td>
<td>p1</td>
<td>p2</td>
<td>d1</td>
<td>p4</td>
<td>d2</td>
<td>d3</td>
<td>d4</td>
<td>p8</td>
<td>d5</td>
<td>d6</td>
<td>d7</td>
<td>d8</td>
<td>d9</td>
<td>d10</td>
<td>d11</td>
</tr>
<tr>
<td>p1</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>p2</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>p4</td>
<td></td>
</tr>
<tr>
<td>p8</td>
<td></td>
</tr>
</tbody>
</table>

Hamming ECC

Set parity bits to create even parity for each group

• A byte of data: 10011010
• Create the coded word, leaving spaces for the parity bits:
 • __ 1 _ 0 0 1 _ 1 0 1 0
 1 2 3 4 5 6 7 8 9 a b c – bit position
• Calculate the parity bits
Hamming ECC

- Position 1 checks bits $1,3,5,7,9,11$: $? _ 1 _ 0 0 1 _ 1 0 1 0$. set position 1 to a $_$.

- Position 2 checks bits $2,3,6,7,10,11$: 0 $? 1 _ 0 0 1 _ 1 0 1 0$. set position 2 to a $_$.

- Position 4 checks bits $4,5,6,7,12$: 0 1 1 $? 0 0 1 _ 1 0 1 0$. set position 4 to a $_$.

- Position 8 checks bits $8,9,10,11,12$: 0 1 1 1 0 0 1 $? 1 0 1 0$. set position 8 to a $_$.

[21]
Hamming ECC

- Position 1 checks bits 1,3,5,7,9,11:
 \[_ _ 1 _ 0 0 1 _ 1 0 1 0 \]. set position 1 to a 0:
 \[0 _ 1 _ 0 0 1 _ 1 0 1 0 \]

- Position 2 checks bits 2,3,6,7,10,11:
 \[0 _ 1 _ 0 0 1 _ 1 0 1 0 \]. set position 2 to a 1:
 \[0 1 1 _ 0 0 1 _ 1 0 1 0 \]

- Position 4 checks bits 4,5,6,7,12:
 \[0 1 1 _ 0 0 1 _ 1 0 1 0 \]. set position 4 to a 1:
 \[0 1 1 1 0 0 1 _ 1 0 1 0 \]

- Position 8 checks bits 8,9,10,11,12:
 \[0 1 1 1 0 0 1 _ 1 0 1 0 \]. set position 8 to a 0:
 \[0 1 1 1 0 0 1 0 1 0 1 0 \]
Hamming ECC

• Final code word: 011100101010
• Data word: 1 001 1010
Hamming ECC Error Check

- Suppose receive\
0111001011110

<table>
<thead>
<tr>
<th>Bit position</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoded data bits</td>
<td>p1</td>
<td>p2</td>
<td>d1</td>
<td>p4</td>
<td>d2</td>
<td>d3</td>
<td>d4</td>
<td>p8</td>
<td>d5</td>
<td>d6</td>
<td>d7</td>
<td>d8</td>
<td>d9</td>
<td>d10</td>
<td>d11</td>
</tr>
<tr>
<td>p1</td>
<td>X</td>
</tr>
<tr>
<td>p2</td>
<td>X</td>
</tr>
<tr>
<td>p4</td>
<td>X</td>
</tr>
<tr>
<td>p8</td>
<td>X</td>
</tr>
</tbody>
</table>
Hamming ECC Error Check

• Suppose receive

011100101110
Hamming ECC Error Check

• Suppose receive

\[\overline{011100101110} \]
\[\underline{0 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1} \ \checkmark \]
\[\underline{11 \ 01 \ 11} \ \text{X-Parity 2 in error} \]
\[\underline{1001} \ 0 \ \checkmark \]
\[\underline{01110} \ \text{X-Parity 8 in error} \]

• Implies position 8+2=10 is in error

\[\overline{011100101110} \]
Hamming ECC Error Correct

• Flip the incorrect bit ...

011100101010
Hamming ECC Error Correct

• Suppose receive

\[
\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 \\
\end{array}
\]
One Problem: Malicious "errors"

- Error Correcting Code and Error Detecting codes designed for random errors
- But sometimes you need to protect against deliberate errors
- Enter cryptographic hash functions
 - Designed to be nonreversible and unpredictable
 - An attacker should not be able to change, add, or remove any bits without changing the hash output
 - For a 256b cryptographic hash function (e.g. SHA256), need to have 2^{128} items you are comparing before you have a reasonable possibility of a collision
 - This is also known as a "Message Digest"
• Great Idea: Redundancy to Get Dependability
 – Spatial (extra hardware) and Temporal (retry if error)
• Reliability: MTTF & Annualized Failure Rate (AFR)
• Availability: % uptime (MTTF-MTTR/MTTF)
• Memory
 – Hamming distance 2: Parity for Single Error Detect
 – Hamming distance 3: Single Error Correction Code +
 encode bit position of error
• Treat disks like memory, except you know when a disk
 has failed—erasure makes parity an Error Correcting
 Code
• RAID-2, -3, -4, -5: Interleaved data and parity