There is one handout today at the entrance!

Great book ⇒

The Universal History of Numbers

by Georges Ifrah
Review

- CS61C: Learn 6 great ideas in computer architecture to enable high performance programming via parallelism, not just learn C

1. Abstraction
 (Layers of Representation/Interpretation)
2. Moore’s Law
3. Principle of Locality/Memory Hierarchy
4. Parallelism
5. Performance Measurement and Improvement
6. Dependability via Redundancy
Putting it all in perspective…

“If the automobile had followed the same development cycle as the computer,

– Robert X. Cringely
Data input: Analog → Digital

- Real world is analog!

- To import analog information, we must do two things
 - Sample
 - E.g., for a CD, every 44,100ths of a second, we ask a music signal how loud it is.
 - Quantize
 - For every one of these samples, we figure out where, on a 16-bit (65,536 tic-mark) “yardstick”, it lies.

www.joshuadysart.com/journal/archives/digital_sampling.gif
Digital data not nec born Analog...

hof.povray.org
BIG IDEA: Bits can represent anything!!

• Characters?
 • 26 letters ⇒ 5 bits \(2^5 = 32\)
 • upper/lower case + punctuation ⇒ 7 bits (in 8) (“ASCII”)
 • standard code to cover all the world’s languages ⇒ 8,16,32 bits (“Unicode”)
 www.unicode.com

• Logical values?
 • 0 ⇒ False, 1 ⇒ True

• colors? Ex: Red (00) Green (01) Blue (11)

• locations / addresses? commands?

• MEMORIZE: N bits ⇔ at most \(2^N\) things
How many bits to represent π?

a) 1
b) 9 ($\pi = 3.14$, so that’s 011 “.” 001 100)
c) 64 (Since Macs are 64-bit machines)
d) Every bit the machine has!
e) ∞
What to do with representations of numbers?

• Just what we do with numbers!
 • Add them
 • Subtract them
 • Multiply them
 • Divide them
 • Compare them

• Example: $10 + 7 = 17$
 • ...so simple to add in binary that we can build circuits to do it!
 • subtraction just as you would in decimal
 • Comparison: How do you tell if $X > Y$?
What if too big?

- Binary bit patterns above are simply representatives of numbers. Abstraction! Strictly speaking they are called “numerals”.

- Numbers really have an ∞ number of digits
 - with almost all being same (00…0 or 11…1) except for a few of the rightmost digits
 - Just don’t normally show leading digits

- If result of add (or -, *, /) cannot be represented by these rightmost HW bits, overflow is said to have occurred.

00000 00001 00010 11110 11111

unsigned
How to Represent Negative Numbers?

(C’s unsigned int, C99’s uintN_t)

- So far, **unsigned numbers**

 \[
 \begin{array}{cccc}
 00000 & 00001 & \ldots & 01111 \ 10000 \ & \ldots \ & 11111
 \end{array}
 \]

- Obvious solution: define leftmost bit to be sign!

 - 0 \(\Rightarrow\) + \quad 1 \(\Rightarrow\) –

 - Rest of bits can be numerical value of number

- Representation called **sign and magnitude**

 \[
 \begin{array}{cccc}
 00000 & 00001 & \ldots & 01111
 \end{array}
 \]

\[
\begin{array}{cccc}
11111 & \ldots & 10001 \ 10000
\end{array}
\]

META: Ain’t no free lunch
Shortcomings of sign and magnitude?

- Arithmetic circuit complicated
 - Special steps depending whether signs are the same or not

- Also, two zeros
 - \(0x00000000 = +0_{\text{ten}}\)
 - \(0x80000000 = -0_{\text{ten}}\)
 - What would two 0s mean for programming?

- Also, incrementing “binary odometer”, sometimes increases values, and sometimes decreases!

Therefore sign and magnitude abandoned
Administrivia

- Upcoming lectures
 - Next few lectures: Introduction to C

- Lab overcrowding
 - Remember, you can go to ANY discussion (none, or one that doesn’t match with lab, or even more than one if you want)
 - Overcrowded labs - consider finishing at home and getting checkoffs in lab, or bringing laptop to lab
 - If you’re checked off in 1st hour, you get an extra point on the labs!
 - TAs get 24x7 cardkey access (and will announce after-hours times)

- Enrollment
 - It will work out, don’t worry

- Soda locks doors @ 6:30pm & on weekends

- Look at class website, piazza often!

 http://inst.eecs.berkeley.edu/~cs61c/piazza.com
Great DeCal courses I supervise

- **UCBUGG (3 units, P/NP)**
 - UC Berkeley Undergraduate Graphics Group
 - TuTh 7-9pm in 200 Sutardja Dai
 - Learn to create a short 3D animation
 - No prereqs (but they might have too many students, so admission not guaranteed)
 - http://ucbugg.berkeley.edu

- **MS-DOS X (2 units, P/NP)**
 - Macintosh Software Developers for OS X
 - TuTh 5-7pm in 200 Sutardja Dai
 - Learn to program iOS devices!
 - No prereqs (other than interest)
 - http://msdosx.berkeley.edu
Another try: complement the bits

- Example: \(7_{10} = 00111_2\) \(-7_{10} = 11000_2\)

- Called One’s Complement

- Note: positive numbers have leading 0s, negative numbers have leadings 1s.

- Binary odometer

- What is \(-00000\) ? Answer: 11111

- How many positive numbers in N bits?

- How many negative numbers?
Shortcomings of One’s complement?

- Arithmetic still a somewhat complicated.
- Still two zeros
 - \(0x00000000 = +0_{\text{ten}}\)
 - \(0xFFFFFFFF = -0_{\text{ten}}\)
- Although used for a while on some computer products, one’s complement was eventually abandoned because another solution was better.
Standard Negative # Representation

• Problem is the negative mappings “overlap” with the positive ones (the two 0s). Want to shift the negative mappings left by one.
 • Solution! For negative numbers, complement, then add 1 to the result

• As with sign and magnitude, & one’s compl. leading 0s ⇒ positive, leading 1s ⇒ negative
 • 000000...xxx is ≥ 0, 111111...xxx is < 0
 • except 1...1111 is -1, not -0 (as in sign & mag.)

• This representation is Two’s Complement
 • This makes the hardware simple!

(C’s int, aka a “signed integer”)
(Also C’s short, long long, ..., C99’s intN_t)
Two’s Complement Formula

- Can represent positive and negative numbers in terms of the bit value times a power of 2:
 \[d_{31} \times -(2^{31}) + d_{30} \times 2^{30} + \ldots + d_2 \times 2^2 + d_1 \times 2^1 + d_0 \times 2^0 \]

- Example: \(1101_{\text{two}}\) in a nibble?
 \[= 1 \times -(2^3) + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 \]
 \[= -2^3 + 2^2 + 0 + 2^0 \]
 \[= -8 + 4 + 0 + 1 \]
 \[= -8 + 5 \]
 \[= -3_{\text{ten}} \]

Example: -3 to +3 to -3 (again, in a nibble):
\[
\begin{align*}
 x & : 1101_{\text{two}} \\
 x' & : 0010_{\text{two}} \\
 +1 & : 0011_{\text{two}} \\
 ()' & : 1100_{\text{two}} \\
 +1 & : 1101_{\text{two}}
\end{align*}
\]
2’s Complement Number “line”: N = 5

- 2^{N-1} non-negatives
- 2^{N-1} negatives
- one zero
- how many positives?

Binary odometer
Bias Encoding: N = 5 (bias = -15)

- # = unsigned + bias
- Bias for N bits chosen as \(-(2^{N-1}-1)\)
- one zero
- how many positives?

Binary odometer

00000 00001 ... 01110 01111 01110 10000 ... 11110 11111
How best to represent -12.75?

a) 2s Complement (but shift binary pt)
b) Bias (but shift binary pt)
c) Combination of 2 encodings
d) Combination of 3 encodings
e) We can’t

Shifting binary point means “divide number by some power of 2. E.g., $11_{10} = 1011.0_2$ so $(11/4)_{10} = 2.75_{10} = 10.110_2$
And in summary...

• We represent “things” in computers as particular bit patterns: N bits $\Rightarrow 2^N$ things

• These 5 integer encodings have different benefits; 1s complement and sign/mag have most problems.

• unsigned (C99’s uintN _t) :

 00000 00001 ... 01111 10000 ... 11111

 10000 ... 11110 11111

• 2’s complement (C99’s intN _t) universal, learn!

 00000 00001 ... 01111

 10000 ... 11110 11111

• Overflow: numbers ∞; computers finite, errors!

META: We often make design decisions to make HW simple

META: Ain’t no free lunch
REFERENCE: Which base do we use?

- **Decimal**: great for humans, especially when doing arithmetic

- **Hex**: if human looking at long strings of binary numbers, its much easier to convert to hex and look 4 bits/symbol
 - Terrible for arithmetic on paper

- **Binary**: what computers use; you will learn how computers do +, -, *, /
 - To a computer, numbers always binary
 - Regardless of how number is written:
 - $32_{ten} = 32_{10} = 0x20 = 100000_2 = 0b100000$
 - Use subscripts “ten”, “hex”, “two” in book, slides when might be confusing
Two’s Complement for N=32

<table>
<thead>
<tr>
<th>0000 ... 0000 0000 0000 0000 _\text{two} =</th>
<th>\text{0}_{10}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 ... 0000 0000 0000 0001 _\text{two} =</td>
<td>\text{1}_{10}</td>
</tr>
<tr>
<td>0000 ... 0000 0000 0000 0010 _\text{two} =</td>
<td>\text{2}_{10}</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>0111 ... 1111 1111 1111 1101 _\text{two} =</td>
<td>\text{2,147,483,645}_{10}</td>
</tr>
<tr>
<td>0111 ... 1111 1111 1111 1110 _\text{two} =</td>
<td>\text{2,147,483,646}_{10}</td>
</tr>
<tr>
<td>0111 ... 1111 1111 1111 1111 _\text{two} =</td>
<td>\text{2,147,483,647}_{10}</td>
</tr>
<tr>
<td>1000 ... 0000 0000 0000 0000 _\text{two} =</td>
<td>\text{2,147,483,648}_{10}</td>
</tr>
<tr>
<td>1000 ... 0000 0000 0000 0001 _\text{two} =</td>
<td>\text{2,147,483,649}_{10}</td>
</tr>
<tr>
<td>1000 ... 0000 0000 0000 0010 _\text{two} =</td>
<td>\text{2,147,483,650}_{10}</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>1111 ... 1111 1111 1111 1101 _\text{two} =</td>
<td>\text{2,147,483,648}_{10}</td>
</tr>
<tr>
<td>1111 ... 1111 1111 1111 1110 _\text{two} =</td>
<td>\text{2,147,483,647}_{10}</td>
</tr>
<tr>
<td>1111 ... 1111 1111 1111 1111 _\text{two} =</td>
<td>\text{2,147,483,646}_{10}</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

- One zero; 1st bit called **sign bit**

- 1 “extra” negative: no positive \(2,147,483,648_{10}\)
Two’s comp. shortcut: Sign extension

- Convert 2’s complement number rep. using n bits to more than n bits

- Simply **replicate** the most significant bit (sign bit) of smaller to fill new bits
 - 2’s comp. positive number has infinite 0s
 - 2’s comp. negative number has infinite 1s
 - Binary representation hides leading bits; sign extension restores some of them

- 16-bit \(-4_{ten}\) to 32-bit:

 \[1111 1111 1111 1100_{two}\]

 \[1111 1111 1111 1111 1111 1111 1111 1100_{two}\]