CS 61C:
Great Ideas in Computer Architecture
Amdahl’s Law, Data-level Parallelism

Instructors:
John Wawrzyniek & Vladimir Stojanovic
http://inst.eecs.berkeley.edu/~cs61c/
New-School Machine Structures
(It’s a bit more complicated!)

- **Parallel Requests**
 Assigned to computer
 e.g., Search “Katz”

- **Parallel Threads**
 Assigned to core
 e.g., Lookup, Ads

- **Parallel Instructions**
 >1 instruction @ one time
 e.g., 5 pipelined instructions

- **Parallel Data**
 >1 data item @ one time
 e.g., Add of 4 pairs of words

- **Hardware descriptions**
 All gates @ one time

- **Programming Languages**

Software

Hardware

- Harness Parallelism & Achieve High Performance

Today’s Lecture

- A₀+B₀ A₁+B₁ A₂+B₂ A₃+B₃
Using Parallelism for Performance

• Two basic ways:
 – Multiprogramming
 • run multiple independent programs in parallel
 • “Easy”
 – Parallel computing
 • run one program faster
 • “Hard”

• We’ll focus on parallel computing for next few lectures
Single-Instruction/Single-Data Stream (SISD)

- Sequential computer that exploits no parallelism in either the instruction or data streams. Examples of SISD architecture are traditional uniprocessor machines.
Single-Instruction/Multiple-Data Stream (SIMD or “sim-dee”)

- SIMD computer exploits multiple data streams against a single instruction stream to operations that may be naturally parallelized, e.g., Intel SIMD instruction extensions or NVIDIA Graphics Processing Unit (GPU)
Multiple-Instruction/Multiple-Data Streams (MIMD or “mim-dee”)

- Multiple autonomous processors simultaneously executing different instructions on different data.
 - MIMD architectures include multicore and Warehouse-Scale Computers
Multiple-Instruction/Single-Data Stream (MISD)

- Multiple-Instruction, Single-Data stream computer that exploits multiple instruction streams against a single data stream.
 - Rare, mainly of historical interest only
Flynn* Taxonomy, 1966

<table>
<thead>
<tr>
<th>Instruction Streams</th>
<th>Data Streams</th>
<th>Single</th>
<th>Multiple</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
<td>SISD: Intel Pentium 4</td>
<td>SIMD: SSE instructions of x86</td>
<td>MIMD: Intel Xeon e5345 (Clovertown)</td>
</tr>
<tr>
<td>Multiple</td>
<td>MISD: No examples today</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- In 2013, SIMD and MIMD most common parallelism in architectures – usually both in same system!
- Most common parallel processing programming style: Single Program Multiple Data ("SPMD")
 - Single program that runs on all processors of a MIMD
 - Cross-processor execution coordination using synchronization primitives
- SIMD (aka hw-level *data parallelism*): specialized function units, for handling lock-step calculations involving arrays
 - Scientific computing, signal processing, multimedia (audio/video processing)

Prof. Michael Flynn, Stanford
Big Idea: Amdahl’s (Heartbreaking) Law

- Speedup due to enhancement E is

\[
\text{Speedup w/ } E = \frac{\text{Exec time w/o } E}{\text{Exec time w/ } E}
\]

- Suppose that enhancement E accelerates a fraction F ($F < 1$) of the task by a factor S ($S > 1$) and the remainder of the task is unaffected

\[
\text{Execution Time w/ } E = \text{Execution Time w/o } E \times \left[(1-F) + \frac{F}{S} \right]
\]

\[
\text{Speedup w/ } E = \frac{1}{\left[(1-F) + \frac{F}{S} \right]}
\]
Big Idea: Amdahl’s Law

$$\text{Speedup} = \frac{1}{(1 - F) + \frac{F}{S}}$$

Example: the execution time of half of the program can be accelerated by a factor of 2. What is the program speed-up overall?

$$\frac{1}{0.5 + 0.5} = \frac{1}{0.5 + 0.25} = 1.33$$
Example #1: Amdahl’s Law

Speedup w/ E = \(\frac{1}{(1-F) + \frac{F}{S}} \)

- Consider an enhancement which runs 20 times faster but which is only usable 25% of the time
 \[\text{Speedup w/ E} = \frac{1}{(.75 + .25/20)} = 1.31 \]

- What if its usable only 15% of the time?
 \[\text{Speedup w/ E} = \frac{1}{(.85 + .15/20)} = 1.17 \]

- Amdahl’s Law tells us that to achieve linear speedup with 100 processors, none of the original computation can be scalar!

- To get a speedup of 90 from 100 processors, the percentage of the original program that could be scalar would have to be 0.1% or less
 \[\text{Speedup w/ E} = \frac{1}{(.001 + .999/100)} = 90.99 \]
If the portion of the program that can be parallelized is small, then the speedup is limited.

The non-parallel portion limits the performance.
Strong and Weak Scaling

• To get good speedup on a parallel processor while keeping the problem size fixed is harder than getting good speedup by increasing the size of the problem.
 – **Strong scaling**: when speedup can be achieved on a parallel processor without increasing the size of the problem
 – **Weak scaling**: when speedup is achieved on a parallel processor by increasing the size of the problem proportionally to the increase in the number of processors

• **Load balancing** is another important factor: every processor doing same amount of work
 – Just one unit with twice the load of others cuts speedup almost in half
Clickers/Peer Instruction

Suppose a program spends 80% of its time in a square root routine. How much must you speed up square root to make the program run 5 times faster?

\[
\text{Speedup w/ } E = \frac{1}{(1-F) + \frac{F}{S}}
\]

A: 5
B: 16
C: 20
D: 100
E: None of the above
Administrativia

- MT2 is Tue, November 10th:
 - Covers lecture material up till today’s lecture
 - Conflict: Email Fred or William by midnight today
SIMD Architectures

- **Data parallelism**: executing same operation on multiple data streams

- Example to provide context:
 - Multiplying a coefficient vector by a data vector (e.g., in filtering)
 \[y[i] := c[i] \times x[i], \quad 0 \leq i < n \]

- Sources of performance improvement:
 - One instruction is fetched & decoded for entire operation
 - Multiplications are known to be independent
 - Pipelining/concurrency in memory access as well
Intel “Advanced Digital Media Boost”

- To improve performance, Intel’s SIMD instructions
 - Fetch one instruction, do the work of multiple instructions
First SIMD Extensions: MIT Lincoln Labs TX-2, 1957
Intel SIMD Extensions

- MMX 64-bit registers, reusing floating-point registers [1992]
- SSE2/3/4, new 128-bit registers [1999]
- AVX, new 256-bit registers [2011]
 - Space for expansion to 1024-bit registers
XMM Registers

<table>
<thead>
<tr>
<th>127</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMM7</td>
<td></td>
</tr>
<tr>
<td>XMM6</td>
<td></td>
</tr>
<tr>
<td>XMM5</td>
<td></td>
</tr>
<tr>
<td>XMM4</td>
<td></td>
</tr>
<tr>
<td>XMM3</td>
<td></td>
</tr>
<tr>
<td>XMM2</td>
<td></td>
</tr>
<tr>
<td>XMM1</td>
<td></td>
</tr>
<tr>
<td>XMM0</td>
<td></td>
</tr>
</tbody>
</table>

- Architecture extended with eight 128-bit data registers: XMM registers
 - x86 64-bit address architecture adds 8 additional registers (XMM8 – XMM15)
Intel Architecture SSE2+
128-Bit SIMD Data Types

• Note: in Intel Architecture (unlike MIPS) a word is 16 bits
 – Single-precision FP: Double word (32 bits)
 – Double-precision FP: Quad word (64 bits)
SSE/SSE2 Floating Point Instructions

<table>
<thead>
<tr>
<th>Data transfer</th>
<th>Arithmetic</th>
<th>Compare</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV{A/U}{SS/PS/SD/PD} xmm, mem/xmm</td>
<td>ADD{SS/PS/SD/PD} xmm, mem/xmm</td>
<td>CMP{SS/PS/SD/PD}</td>
</tr>
<tr>
<td></td>
<td>SUB{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td>MOV {H/L} {PS/PD} xmm, mem/xmm</td>
<td>MUL{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DIV{SS/PS/SD/PD} xmm, mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SQRT{SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAX {SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIN{SS/PS/SD/PD} mem/xmm</td>
<td></td>
</tr>
</tbody>
</table>

xmm: one operand is a 128-bit SSE2 register
mem/xmm: other operand is in memory or an SSE2 register
{SS} Scalar Single precision FP: one 32-bit operand in a 128-bit register
{PS} Packed Single precision FP: four 32-bit operands in a 128-bit register
{SD} Scalar Double precision FP: one 64-bit operand in a 128-bit register
{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
{A} 128-bit operand is aligned in memory
{U} means the 128-bit operand is unaligned in memory
{H} means move the high half of the 128-bit operand
{L} means move the low half of the 128-bit operand
Packed and Scalar Double-Precision Floating-Point Operations

Packed

Scalar
Example: SIMD Array Processing

for each f in array
 f = sqrt(f)

for each f in array
 {
 load f to the floating-point register
 calculate the square root
 write the result from the register to memory
 }

for each 4 members in array
 {
 load 4 members to the SSE register
 calculate 4 square roots in one operation
 store the 4 results from the register to memory
 }

SIMD style
Data-Level Parallelism and SIMD

• SIMD wants adjacent values in memory that can be operated in parallel
• Usually specified in programs as loops
 \[
 \text{for}(i=1000; \ i>0; \ i=i-1) \\
 \quad x[i] = x[i] + s;
 \]
• How can reveal more data-level parallelism than available in a single iteration of a loop?
• *Unroll loop* and adjust iteration rate
Looping in MIPS

Assumptions:
- t_1 is initially the address of the element in the array with the highest address
- f_0 contains the scalar value s
- $8(t_2)$ is the address of the last element to operate on

CODE:
Loop: 1. l.d $f_2,0(t_1)$; f_2=array element
 2. add.d f_{10},f_2,f_0 ; add s to f_2
 3. s.d $f_{10},0(t_1)$; store result
 4. addiu $t_1,t_1,#-8$; decrement pointer 8 byte
 5. bne $t_1,t_2,Loop$;repeat loop if t_1 != t_2
Loop Unrolled

Loop:

<table>
<thead>
<tr>
<th>Command</th>
<th>Opcode</th>
<th>Register(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>l.d</td>
<td>$f2,0($t1)</td>
<td></td>
</tr>
<tr>
<td>add.d</td>
<td>$f10,$f2,$f0</td>
<td></td>
</tr>
<tr>
<td>s.d</td>
<td>$f10,0($t1)</td>
<td></td>
</tr>
<tr>
<td>l.d</td>
<td>$f4,-8($t1)</td>
<td></td>
</tr>
<tr>
<td>add.d</td>
<td>$f12,$f4,$f0</td>
<td></td>
</tr>
<tr>
<td>s.d</td>
<td>$f12,-8($t1)</td>
<td></td>
</tr>
<tr>
<td>l.d</td>
<td>$f6,-16($t1)</td>
<td></td>
</tr>
<tr>
<td>add.d</td>
<td>$f14,$f6,$f0</td>
<td></td>
</tr>
<tr>
<td>s.d</td>
<td>$f14,-16($t1)</td>
<td></td>
</tr>
<tr>
<td>l.d</td>
<td>$f8,-24($t1)</td>
<td></td>
</tr>
<tr>
<td>add.d</td>
<td>$f16,$f8,$f0</td>
<td></td>
</tr>
<tr>
<td>s.d</td>
<td>$f16,-24($t1)</td>
<td></td>
</tr>
<tr>
<td>addiu</td>
<td>$t1,$t1,#-32</td>
<td></td>
</tr>
<tr>
<td>bne</td>
<td>$t1,$t2,Loop</td>
<td></td>
</tr>
</tbody>
</table>

NOTE:
1. Only 1 Loop Overhead every 4 iterations
2. This unrolling works if loop_limit(mod 4) = 0
3. Using different registers for each iteration eliminates data hazards in pipeline
Loop Unrolled Scheduled

Loop:
\[
\begin{align*}
\text{l.d} & \quad \text{f2,0(t1)} \\
\text{l.d} & \quad \text{f4,-8(t1)} \\
\text{l.d} & \quad \text{f6,-16(t1)} \\
\text{l.d} & \quad \text{f8,-24(t1)} \\
\text{add.d} & \quad \text{f10,f2,f0} \\
\text{add.d} & \quad \text{f12,f4,f0} \\
\text{add.d} & \quad \text{f14,f6,f0} \\
\text{add.d} & \quad \text{f16,f8,f0} \\
\text{s.d} & \quad \text{f10,0(t1)} \\
\text{s.d} & \quad \text{f12,-8(t1)} \\
\text{s.d} & \quad \text{f14,-16(t1)} \\
\text{s.d} & \quad \text{f16,-24(t1)} \\
\text{addiu} & \quad \text{t1,t1,#-32} \\
\text{bne} & \quad \text{t1,t2,Loop}
\end{align*}
\]

4 Loads side-by-side: Could replace with 4-wide SIMD Load

4 Adds side-by-side: Could replace with 4-wide SIMD Add

4 Stores side-by-side: Could replace with 4-wide SIMD Store
Loop Unrolling in C

• Instead of compiler doing loop unrolling, could do it yourself in C

  ```c
  for(i=1000; i>0; i=i-1)
      x[i] = x[i] + s;
  ```

• Could be rewritten

  ```c
  for(i=1000; i>0; i=i-4) {
      x[i] = x[i] + s;
      x[i-1] = x[i-1] + s;
      x[i-2] = x[i-2] + s;
      x[i-3] = x[i-3] + s;
  }
  ```

What is downside of doing it in C?
Generalizing Loop Unrolling

• A loop of \(n \) iterations
• \(k \) copies of the body of the loop
• Assuming \((n \mod k) \neq 0\)

Then we will run the loop with 1 copy of the body \((n \mod k)\) times and with \(k \) copies of the body \(\text{floor}(n/k) \) times
Example: Add Two Single-Precision Floating-Point Vectors

Computation to be performed:

\[
\begin{align*}
\text{vec}_\text{res}.x & = v1.x + v2.x; \\
\text{vec}_\text{res}.y & = v1.y + v2.y; \\
\text{vec}_\text{res}.z & = v1.z + v2.z; \\
\text{vec}_\text{res}.w & = v1.w + v2.w;
\end{align*}
\]

SSE Instruction Sequence:

(Note: Destination on the right in x86 assembly)

- `movaps address-of-v1, %xmm0`

 // v1.w | v1.y | v1.x -> xmm0

- `addps address-of-v2, %xmm0`

 // v1.w+v2.w | v1.z+v2.z | v1.y+v2.y | v1.x+v2.x -> xmm0

- `movaps %xmm0, address-of-vec_res`

`mov a ps` : move from mem to XMM register, memory aligned, packed single precision

`add ps` : add from mem to XMM register, packed single precision

`mov a ps` : move from XMM register to mem, memory aligned, packed single precision
In The News: Intel acquired Altera

• Altera is 2nd biggest FPGA maker after Xilinx
 – FPGA (Field-Programmable Gate Array)
• Altera already has fabrication deal to use Intel’s 14nm technology
• Intel experimenting with FPGA next to server processor
• Microsoft to use programmable logic chips to accelerate Bing search engine
Break

• Come join [CSUA Hackathon](#)! Form teams of 4, hack, and win awesome prizes! Prizes include monitors, headsets, and more! Delicious food will be served throughout, including some secret midnight goodies!

• Register your team day-of and write a good description of your project (1-2 sentences).

 Hackathon starts from 6PM on October 30th - 2PM, October 31st. See you there!

• Also, feel free to join CSUA's General Meeting #2 to listen and network with Jeff Atwood, our speaker, and socialize with other people from the CS community.
Intel SSE Intrinsics

• Intrinsics are C functions and procedures for inserting assembly language into C code, including SSE instructions
 – With intrinsics, can program using these instructions indirectly
 – One-to-one correspondence between SSE instructions and intrinsics
Example SSE Intrinsics

Intrinsics:

- Vector data type:
 _m128d
- Load and store operations:
 _mm_load_pd MOVAPD/aligned, packed double
 _mm_store_pd MOVAPD/aligned, packed double
 _mm_loadu_pd MOVUPD/unaligned, packed double
 _mm_storeu_pd MOVUPD/unaligned, packed double
- Load and broadcast across vector
 _mm_load1_pd MOVSD + shuffling/duplicating
- Arithmetic:
 _mm_add_pd ADDPD/add, packed double
 _mm_mul_pd MULPD/multiple, packed double
Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:

\[C_{i,j} = (A \times B)_{i,j} = \sum_{k=1}^{2} A_{i,k} \times B_{k,j} \]

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\times
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
= \begin{bmatrix}
C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\times
\begin{bmatrix}
1 & 3 \\
2 & 4
\end{bmatrix}
= \begin{bmatrix}
C_{1,1} = 1 \times 1 + 0 \times 2 = 1 & C_{1,2} = 1 \times 3 + 0 \times 4 = 3 \\
C_{2,1} = 0 \times 1 + 1 \times 2 = 2 & C_{2,2} = 0 \times 3 + 1 \times 4 = 4
\end{bmatrix}
\]
Example: 2 x 2 Matrix Multiply

- Using the XMM registers
 - 64-bit/double precision/two doubles per XMM reg

<table>
<thead>
<tr>
<th></th>
<th>C_1</th>
<th></th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th></th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>B_1</th>
<th></th>
<th>B_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stored in memory in Column order

\[
\begin{bmatrix}
C_{1,1} & C_{1,2} \\
C_{2,1} & C_{2,2}
\end{bmatrix}
\]

\[
\begin{bmatrix}
C_1 \\
C_2
\end{bmatrix}
\]
Example: 2 x 2 Matrix Multiply

- **Initialization**

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

_mm_load_pd: Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register
Example: 2 x 2 Matrix Multiply

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
= \begin{bmatrix}
C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1} & C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2} \\
C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1} & C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}
\end{bmatrix}
\]

- Initialization

<table>
<thead>
<tr>
<th>C₁</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₂</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(l = 1 \)

_mm_load_pd: Load 2 doubles into XMM reg, Stored in memory in Column order

_mm_load1_pd: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)
Example: 2 x 2 Matrix Multiply

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
=\begin{bmatrix}
C_{1,1}=A_{1,1}B_{1,1}+A_{1,2}B_{2,1} & C_{1,2}=A_{1,1}B_{1,2}+A_{1,2}B_{2,2} \\
C_{2,1}=A_{2,1}B_{1,1}+A_{2,2}B_{2,1} & C_{2,2}=A_{2,1}B_{1,2}+A_{2,2}B_{2,2}
\end{bmatrix}
\]

- First iteration intermediate result

\[
\begin{array}{ll}
C_1 & 0+A_{1,1}B_{1,1} & 0+A_{2,1}B_{1,1} \\
C_2 & 0+A_{1,1}B_{1,2} & 0+A_{2,1}B_{1,2}
\end{array}
\]

\[
c1 = _{\text{mm_add_pd}}(c1, _{\text{mm_mul_pd}}(a,b1));
c2 = _{\text{mm_add_pd}}(c2, _{\text{mm_mul_pd}}(a,b2));
\]

SSE instructions first do parallel multiplies and then parallel adds in XMM registers

- \(I = 1 \)

_{\text{mm_load_pd}}: Stored in memory in Column order

_{\text{mm_load1_pd}}: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)
Example: 2 x 2 Matrix Multiply

\[
\begin{bmatrix}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{bmatrix}
\times
\begin{bmatrix}
B_{1,1} & B_{1,2} \\
B_{2,1} & B_{2,2}
\end{bmatrix}
= \begin{bmatrix}
C_{1,1}=A_{1,1}B_{1,1}+A_{1,2}B_{1,2} \\
C_{2,1}=A_{2,1}B_{1,1}+A_{2,2}B_{1,2}
\end{bmatrix}
\]
\begin{bmatrix}
C_{1,2}=A_{1,1}B_{2,1}+A_{1,2}B_{2,2} \\
C_{2,2}=A_{2,1}B_{2,1}+A_{2,2}B_{2,2}
\end{bmatrix}

- First iteration intermediate result

\[
\begin{array}{c|c|}
C_1 & 0+A_{1,1}B_{1,1} & 0+A_{2,1}B_{1,1} \\
\hline
C_2 & 0+A_{1,1}B_{1,2} & 0+A_{2,1}B_{1,2}
\end{array}
\]

\[
c_1 = \texttt{_mm_add_pd(c1, _mm_mul_pd(a, b1))};
\]
\[
c_2 = \texttt{_mm_add_pd(c2, _mm_mul_pd(a, b2))};
\]

SSE instructions first do parallel multiplies and then parallel adds in XMM registers.

- \(I = 2 \)

\[
\begin{array}{c|c|}
A & A_{1,2} & A_{2,2} \\
\hline
B_1 & B_{2,1} & B_{2,1} \\
\hline
B_2 & B_{2,2} & B_{2,2}
\end{array}
\]

\texttt{_mm_load_pd:} Stored in memory in Column order

\texttt{_mm_load1_pd:} SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)
Example: 2 x 2 Matrix Multiply

• Second iteration intermediate result

\[
\begin{array}{c|c}
C_{1,1} & C_{2,1} \\
\hline
A_{1,1}B_{1,1}+A_{1,2}B_{2,1} & A_{2,1}B_{1,1}+A_{2,2}B_{2,1} \\
A_{1,1}B_{1,2}+A_{1,2}B_{2,2} & A_{2,1}B_{1,2}+A_{2,2}B_{2,2} \\
C_{1,2} & C_{2,2}
\end{array}
\]

\[
c1 = _\text{mm_add_pd}(c1, _\text{mm_mul_pd}(a,b1));
\]

\[
c2 = _\text{mm_add_pd}(c2, _\text{mm_mul_pd}(a,b2));
\]

SSE instructions first do parallel multiplies and then parallel adds in XMM registers

• \(l = 2 \)

\[
A
\begin{array}{c|c}
A_{1,2} & A_{2,2} \\
\end{array}
\]

_\text{mm_load_pd}: Stored in memory in Column order

\[
B_1
\begin{array}{c|c}
B_{2,1} & B_{2,1} \\
\end{array}
\]

\[
B_2
\begin{array}{c|c}
B_{2,2} & B_{2,2} \\
\end{array}
\]

_\text{mm_load1_pd}: SSE instruction that loads a double word and stores it in the high and low double words of the XMM register (duplicates value in both halves of XMM)
Example: 2 x 2 Matrix Multiply
(Part 1 of 2)

#include <stdio.h>
// header file for SSE compiler intrinsics
#include <emmintrin.h>

// NOTE: vector registers will be represented in
comments as v1 = [a | b]
// where v1 is a variable of type __m128d and
a, b are doubles

int main(void) {
 // allocate A,B,C aligned on 16-byte boundaries
 double B[4] __attribute__((aligned (16)));
 double C[4] __attribute__((aligned (16)));
 int lda = 2;
 int i = 0;
 // declare several 128-bit vector variables
 __m128d c1,c2,a,b1,b2;

 // Initialize A, B, C for example
 /* A =
 1 0
 0 1
 */

 /* B =
 1 3
 2 4
 */
 B[0] = 1.0; B[1] = 2.0; B[2] = 3.0; B[3] = 4.0;

 /* C =
 0 0
 0 0
 */
 C[0] = 0.0; C[1] = 0.0; C[2] = 0.0; C[3] = 0.0;
}
Example: 2 x 2 Matrix Multiply
(Part 2 of 2)

// used aligned loads to set
// c1 = [c_11 | c_21]
c1 = _mm_load_pd(C+0*lda);
// c2 = [c_12 | c_22]
c2 = _mm_load_pd(C+1*lda);

for (i = 0; i < 2; i++) {
 /* a =
 i = 0: [a_11 | a_21]
 i = 1: [a_12 | a_22]
 */
a = _mm_load_pd(A+i*lda);
 /* b1 =
 i = 0: [b_11 | b_11]
 i = 1: [b_21 | b_21]
 */
b1 = _mm_load1_pd(B+i+0*lda);
 /* b2 =
 i = 0: [b_12 | b_12]
 i = 1: [b_22 | b_22]
 */
b2 = _mm_load1_pd(B+i+1*lda);
 /* c1 =
 i = 0: [c_11 + a_11*b_11 | c_21 + a_21*b_11]
 i = 1: [c_11 + a_21*b_21 | c_21 + a_22*b_21]
 */
c1 = _mm_add_pd(c1,_mm_mul_pd(a,b1));
 /* c2 =
 i = 0: [c_12 + a_11*b_12 | c_22 + a_21*b_12]
 i = 1: [c_12 + a_21*b_22 | c_22 + a_22*b_22]
 */
c2 = _mm_add_pd(c2,_mm_mul_pd(a,b2));
}

// store c1,c2 back into C for completion
_mm_store_pd(C+0*lda,c1);
_mm_store_pd(C+1*lda,c2);

// print C
printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
return 0;
Inner loop from gcc –O -S

L2: movapd (%rax,%rsi), %xmm1 //Load aligned A[i,i+1]->m1
movddup (%rdx), %xmm0 //Load B[j], duplicate->m0
mulpd %xmm1, %xmm0 //Multiply m0*m1->m0
addpd %xmm0, %xmm3 //Add m0+m3->m3
movddup 16(%rdx), %xmm0 //Load B[j+1], duplicate->m0
mulpd %xmm0, %xmm1 //Multiply m0*m1->m1
addpd %xmm1, %xmm2 //Add m1+m2->m2
addq $16, %rax // rax+16 -> rax (i+=2)
addq $8, %rdx // rdx+8 -> rdx (j+=1)
cmpq $32, %rax // rax == 32?
jne L2 // jump to L2 if not equal
movapd %xmm3, (%rcx) //store aligned m3 into C[k,k+1]
movapd %xmm2, (%rdi) //store aligned m2 into C[l,l+1]
And in Conclusion, ...

- Amdahl’s Law: Serial sections limit speedup
- Flynn Taxonomy
- Intel SSE SIMD Instructions
 - Exploit data-level parallelism in loops
 - One instruction fetch that operates on multiple operands simultaneously
 - 128-bit XMM registers
- SSE Instructions in C
 - Embed the SSE machine instructions directly into C programs through use of intrinsics
 - Achieve efficiency beyond that of optimizing compiler