1 Bit Manipulation

1. Write 22 in binary.
 10110

2. Assuming $x_1, x_2, ..., x_n$ are integers. What is $(x_1 \land x_2 \land ... \land x_n) \land (x_1 \land x_2 \land ... \land x_n)$?
 0

3. Write an expression to check whether a 32-bit integer is less than 0 using only == and the bit operators.
 $(x >>> 31) == 1$

4. What does the following code do?

```java
public static int mysteryBit(int n) {
    return n & (n - 1);
}
```

Return n with the rightmost 1 bit set to 0.

5. Write a program to count the number of 1 bits in an integer. You can use the function in part 5 as a hint.

```java
public static int countBits(int n) {
    int count = 0;
    while (n != 0) {
        n &= (n - 1);
        count += 1;
    }
    return count;
}
```
Algorithmic Analysis

1. For each of the following function, find the Big-Theta expression for:

 a) The number of \(i += 1 \) or \(i *= 2 \) operations
 b) The number of \(j += 1 \) operations
 c) The number of print operations
 d) The runtime of the function

   ```java
   public static void printIndices(int n) {
       for (int i = 0; i < n; i += 1) {
           for (int j = 0; j < i; j += 1) {
               System.out.println(i + j);
           }
       }
   }
   
   public static void printIndices2(int n) {
       for (int i = 1; i < n; i *= 2) {
           for (int j = 0; j < i; j += 1) {
               System.out.println(j);
           }
       }
   }
   ```

 a) \(\Theta(n) \) for `printIndices` and \(\Theta(\log(n)) \) for `printIndices2`
 b) \(\Theta(n^2) \) for `printIndices` and \(\Theta(n) \) for `printIndices2`
 c) Same as b)
 d) Same as b)

2. What is the big-Theta running time of the following functions?

   ```java
   public int weirdFib(int n) {
       if (n <= 1) {
           return n;
       }
       return weirdFib(n - 1) + weirdFib(n - 1);
   }
   
   public static void mystery(int n) {
       if (n == 1) {
           return;
       }
       for (int i = 0; i < n; i += 1) {
           mystery(n-1);
       }
   }
   ```

 \(\Theta(2^n) \) for `weirdFib` and \(\Theta(n!) \) for `mystery`
3 **Regex**

Write a Java regular expression to match each of the following sets of binary strings. You may only use the following characters: () | 01*

1) All binary strings

2) Binary strings that begins and ends with 1

3) Binary strings that contains at least three 1s

4) Binary string that contains at least three consecutive 1s

5) Binary string that doesn’t contain the substring 110.

1) (0|1)*

2) 1(0|1)*1|1

3) 0*10*10*1(0|1)*

4) (0|1)*111(0|1)*

5) (0|10)*1*