UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering
and Computer Sciences
Computer Science Division

CS61B
Fall 2009

P. N. Hilfinger

Test #1

READ THIS PAGE FIRST. Please do not discuss this exam with people who haven’t taken it.
Your exam should contain 5 problems on 11 pages. Officially, it is worth 20 points (out of a total
of 200).

This is an open-book test. You have fifty minutes to complete it. You may consult any books,
notes, or other inanimate objects available to you. You may use any program text supplied in
lectures, problem sets, or solutions. Please write your answers in the spaces provided in the test.
Make sure to put your name, login, and lab section in the space provided below. Put your login
and initials clearly on each page of this test and on any additional sheets of paper you use for your
answers.

Be warned: my tests are known to cause panic. Fortunately, this reputation is entirely unjusti-
ﬁed. Just read all the questions carefully to begin with, and first try to answer those parts about
which you feel most conﬁdent. Do not be alarmed if some of the answers are obvious. Should
you feel an attack of anxiety coming on, feel free to jump up and run around the outside of the
building once or twice.

Your name: ____________________________ Login: ____________

1. __________/3

Login of person to your Left: __________Right: __________

2. __________/4

Discussion section number or time: __________________________

3. __________/

Discussion TA: __________________________

4. __________/6

Lab section number or time: __________________________

5. __________/7

Lab TA: __________________________

TOT __________/20
Assorted Reference Material

IntList

 public class IntList {
 public int head;
 public IntList tail;
 public IntList (int head, IntList tail) {
 this.head = head; this.tail = tail;
 } }

Excerpt from class java.lang.String

 package java.lang;
 public final class String implements Serializable, Comparable, CharSequence {
 public char charAt (int k) { ... }
 public int length () { ... }
 public int compareTo (String x) { ... }
 public String substring (int start, int end) { ... }
 }

java.util.Iterator

 package java.util;
 public interface Iterator<SomeType> {
 public boolean hasNext ();
 public SomeType next ();
 public void remove ();
 }
1. [3 points] Provide simple and tight asymptotic bounds for the running times of the following methods as a function of the value of N, the length of A. If possible, give a single Θ bound that always describes the running time, regardless of the input. Otherwise give an upper and a lower bound. (To be precise, we assume there is some set of values for A, one of each size, and we want you to put as good a bound as you can on the running time as a function of the size that will hold for any such set of values).

```
static void foo(int[] A) {
    int N = A.length;
    for (int n = N; n > 1; n -= 1) {
        for (int i = 1; i < n; i += 1) {
            if (A[i - 1] > A[i]) {
                int tmp = A[i - 1];
                A[i - 1] = A[i];
                A[i] = tmp;
            }
        }
    }
}
```

Bound(s): ________________________________

```
static int bar(int[] A) {
    int N = A.length;
    int S;
    S = 0;
    for (int i = 0; i < N; i += 1) {
        for (int j = i+1; j < N; j += 1) {
            if (A[j] == A[i]) {
                S += 1;
                break;
            }
        }
    }
    return S;
}
```

Bound(s): ________________________________
c. static boolean sump(int[] A, int S) {
 return sump1(A, S, 0);
}

private static boolean sump1(int[] A, int S, int k) {
 int N = A.length;
 if (S == 0)
 return true;
 else if (k >= N)
 return false;
 else if (S >= A[k] && sump1(A, S-A[k], k+1))
 return true;
 else return sump1(A, S, k+1);
}

Bound(s) on sump: ________________________________

(Include time of the helper function sump1 in the time for sump).
2. [4 points]

a. Assuming that $0 \leq m \leq 31$, fill in the blank with a Java expression involving only the variable m (not s or k) so that the program fragment below prints "OK":

```java
int k, s;
k = 1; s = 0;
for (int i = 1; i < m; i += 1) {
    s = s|k;
    k = k<<1;
}
if (s == ______________________)  
    System.out.println ("OK");
```

The expression in the blank may not call any methods.

b. One of the three comments below must be wrong (that is, unsatisfiable regardless of the method body). Which one and why just that one? [NOTE: you must tell why to get full credit.]

```java
/** Upon completion, A contains the concatenation of the original
* list A in front of the list B. The original contents of
* B are not affected. */
void concat1 (IntList A, IntList B) { ... }

/** Returns the result of concatenating the contents of A in front of
* the contents of B. The original contents of A and B are not
* affected. */
IntList concat2 (IntList A, IntList B) { ... }

/** Upon completion, A contains the concatenation of the original list
* A in front of the list B. The original contents of B are
* not affected. Assumes that A is not empty. */
void concat3 (IntList A, IntList B) { ... }
```
c. What does the following legal program print when the main program is invoked?

```java
class Exceptions {
    public static void main (String... args) {
        try {
            f (42, new IllegalArgumentException ());
        } catch (IllegalArgumentException e) {
            System.out.println ("main");
        }
    }

    static void f (int n, IllegalArgumentException err) {
        if (n > 39) {
            try {
                f (n-1, err);
            } catch (IllegalArgumentException e) {
                System.out.printf ("f(%d) err%n", n);
            }
            System.out.printf ("f(%d)%n", n);
        } else {
            g (n, err);
        }
    }

    static void g (int n, IllegalArgumentException err) {
        if (n < 3)
            throw err;
        else f(n-1, err);
    }
}
```
d. If I compile and run the program below with “java G,” what is printed? (If execution causes a runtime error, just write “error” at the appropriate point in the printout. If the program won’t compile, just say so.)

```java
abstract class F {
    abstract int a (int x);

    F c (F g) {
        System.out.println ("F.c");
        return new C(this, g);
    }

    F r (int n) {
        System.out.println ("F.r");
        if (n <= 1)
            return this;
        else return this.c (r(n-1));
    }

    F c2 () {
        return this.r(2);
    }
}

static class C extends F {
    private F f, g;
    C (F f, F g) { this.f = f; this.g = g; }
    int a (int x) { return f.a(g.a(x)); }
}

class G extends F {
    int i;
    G (int i) { this.i = i; }
    int a (int x) { return x + i; }
    public static void main (String... args) {
        F f = new G (21);
        System.out.println (f.c2().a(0));
    }
}
```
3. [1 point] What kind of journey are we undertaking when that Apryll, wyth hys shouris sote, the droughte of Marche hath percyd the rote?

4. [6 points] Fill in the following method to obey its comment.

```java
/** Set each R[k] to a sublist of L such that R[k] contains
 * <=k+1 elements and the concatenation of all the R[k] in order
 * gives a prefix of the original list L. Each list R[k] is made
 * as large as possible subject to these rules, with earlier lists
 * taking precedence. For example, if the original L contains
 * [ 1, 2, 3, 4, 5, 6, 7 ], and R has 6 elements, then on return R
 * contains [ [1], [2,3], [4,5,6], [7], [ ], [ ] ]. If R had only 2
 * elements, then on return it would contain [[1], [2,3]].
 * May destroy the original contents of the IntList objects in L,
 * but does not create any new IntList objects. */
 static void triangularize (IntList[] R, IntList L) {
```
5. [7 points] Programs that work with very long sequences of characters (such as text editors) typically do not use ordinary Strings to represent the sequences because most operations on long Strings are not efficient. Instead, these programs use representations implemented using collections of much smaller Strings, each no more than a fixed, maximum size. For example, if this maximum size were 4, then such a representation could internally represent the string "Hi, world" as the list of Strings ["Hi", ",", "w", "orld"] or as ["Hi", ",", "w", "orld", "d"] etc. The SegmentedString class declared below is one such representation (incomplete and not particularly efficient).

a. Fill in the indicated blanks in the implementation of SegmentedString to fulfill the comments. From the point of view of the client who uses this class, it represents a list of characters. The fact that internally it breaks the input into smaller strings must remain completely invisible to the client. The compiler supports autoboxing, so you can assume that values of type char and values of type Character are pretty much interchangeable.

```java
/** A sequence of characters. */
public class SegmentedString extends AbstractList<Character> implements List<Character> {

    private final static int MAX_SEGMENT_LENGTH = <some integer>;

    /** The constituent substrings of THIS. The full sequence of characters
     * that THIS represents is the concatenation of the Strings in segments.
     * Each segment has length no greater than MAX_SEGMENT_LENGTH. Segments
     * need not be of maximum length. */
    private List<String> segments;

    /** Initializes an empty sequence. */
    public SegmentedString() { // FILL IN (about 1 line)

    }

    /** Adds STR to the end of THIS character sequence. */
    public void append(String str) { // FILL IN (about 5 lines)

    }

}
```
/** Returns the length of (number of characters in) the sequence. */
public int size() { // FILL IN (about 5 lines)

}/** The character at index K in the sequence.
 * Throws IndexOutOfBoundsException when K is negative or >= size(). */
public Character get(int k) { // FILL IN (about 10 lines)
b. Suppose that we want to provide an iterator for `SegmentedString` that allows us to iterate through the entire sequence in time $O(N)$, where N is the size of the string. We can do so by adding the following to the `SegmentedString` class. Fill in just the representation—that is, the constructor, the instance variables and their comments—for the `SegIterator` class below to allow this. Make sure the comments explain exactly what each instance variable is supposed to mean.

```java
public Iterator<Character> iterator () {
    return new SegIterator ();
}

private class SeqIterator implements Iterator<Character> {
    SeqIterator () { FILL IN

    }

    // FILL IN INSTANCE VARIABLES AND THEIR COMMENTS (ONLY)

    }
```