Why Graphs?

- For expressing non-hierarchically related items
- Examples:
 - Networks: pipelines, roads, assignment problems
 - Representing processes: flow charts, Markov models
 - Representing partial orderings: PERT charts, makefiles

Some Terminology

- A graph consists of
 - A set of nodes (aka vertices)
 - A set of edges: pairs of nodes.
 - Nodes with an edge between are adjacent.
 - Depending on problem, nodes or edges may have labels (or weights)
- Typically call node set $V = \{v_0, \ldots \}$, and edge set E.
- If the edges have an order (first, second), they are directed edges, and we have a directed graph (digraph), otherwise an undirected graph.
- Edges are incident to their nodes.
- Directed edges exit one node and enter the next.
- A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed).
- A graph is cyclic if it has a cycle, else acyclic. Abbreviation: Directed Acyclic Graph—DAG.
Trees are Graphs

- A graph is connected if there is a (possibly directed) path between every pair of nodes.
- That is, if one node of the pair is reachable from the other.
- A DAG is a (rooted) tree iff connected, and every node but the root has exactly one parent.
- A connected, acyclic, undirected graph is also called a free tree. Free: we're free to pick the root; e.g.,

Examples of Use

- Edge = Connecting road, with length.

 Detroit \[\rightarrow \] Chicago

- Edge = Must be completed before; Node label = time to complete.

 Eat \(1\) hr
 Sleep \(8\) hrs

- Edge = Begat

 Martin \[\rightarrow \] George

More Examples

- Edge = some relationship

 potstickers \[\rightarrow \] John \(\overset{eats}{\longrightarrow} \) loves \[\rightarrow \] Mary

- Edge = next state might be (with probability)

 hat \[0.4\] \[\rightarrow \] the \[0.6\] cat \[0.4\] in \[0.1\] bed

- Edge = next state in state machine, label is triggering input. (Start at s. Being in state 4 means "there is a substring '001' somewhere in the input").

 1: \[a]\[1\] 2: \[b]\[2\] 3: \[c]\[3\]

 \(1,2\) \[\rightarrow\] \(2,3\) \[\rightarrow\] \(1,3\) \[\rightarrow\] \[0\] \[\rightarrow\] \[0\] \[\rightarrow\] \[0\]

Representation

- Often useful to number the nodes, and use the numbers in edges.
- *Edge list representation:* each node contains some kind of list (e.g., linked list or array) of its successors (and possibly predecessors).

- Edge sets: Collection of all edges. For graph above:

 \(\{(1,2), (1,3), (2,3)\}\)

- *Adjacency matrix:* Represent connection with matrix entry:

 \[
 \begin{bmatrix}
 1 & 2 & 3 \\
 1 & 0 & 1 & 1 \\
 2 & 0 & 0 & 1 \\
 3 & 0 & 0 & 0 \\
 \end{bmatrix}
 \]
Traversing a Graph

- Many algorithms on graphs depend on traversing all or some nodes.
- Can't quite use recursion because of cycles.
- Even in acyclic graphs, can get combinatorial explosions:
 \[\Theta(2^N) \] operations!
- So typically try to visit each node constant # of times (e.g., once).

Treat 0 as the root and do recursive traversal down the two edges out of each node.

Example: Depth-First Traversal

Problem: Visit every node reachable from \(v \) once, visiting nodes further from start first.

Stack<Vertex> fringe;

fringe = stack containing \{v\};
while (! fringe.isEmpty()) {
 Vertex v = fringe.pop();
 if (! marked(v)) {
 mark(v);
 VISIT(v);
 For each edge \((v,w) \) {
 if (! marked(w))
 fringe.push(w);
 }
 }
}

General Graph Traversal Algorithm

```java
COLLECTION_OF_Vertices fringe;
fringe = INITIAL_COLLECTION;
while (! fringe.isEmpty()) {
    Vertex v = fringe.REMOVE_HIGHEST_PRIORITY_ITEM();
    if (! MARKED(v)) {
        MARK(v);
        VISIT(v);
        For each edge \( (v,w) \) {
            if (NEEDS_PROCESSING(w))
                Add w to fringe;
        }
    }
}
```

Replace COLLECTION_OF_Vertices, INITIAL_COLLECTION, etc. with various types, expressions, or methods to different graph algorithms.

Depth-First Traversal Illustrated
Topological Sorting

Problem: Given a DAG, find a linear order of nodes consistent with the edges.

• That is, order the nodes v_0, v_1, ... such that v_k is never reachable from v_j if $j' > k$.

• Gmake does this. Also PERT charts.

Topological Sort in Action

Set<Vertex> fringe; fringe = set of all nodes with no predecessors;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeOne();
 add v to end of result list;
 for each edge (v,w) {
 decrease predecessor count of w;
 if (predecessor count of w == 0)
 fringe.add (w);
 }
}

Output: []
[A]
[A,C]
[A,C,B]
[A,C,B,F,D,E,G,H]
[A,B,C,F,D,E,G,H]
[A,B,C,F,D,E,G,H]
[A,B,C,F,D,E,G,H]
[A,B,C,F,D,E,G,H]

Shortest Paths: Dijkstra's Algorithm

Problem: Given a graph (directed or undirected) with non-negative edge weights, compute shortest paths from given source node, s, to all nodes.

• "Shortest" = sum of weights along path is smallest.

• For each node, keep estimated distance from s, ...

• ...and of preceding node in shortest path from s.

PriorityQueue<Vertex> fringe;
for each node v { v.dist() = ∞; v.back() = null; }
s.dist() = 0;
fringe = priority queue ordered by smallest .dist();
add all vertices to fringe;
while (! fringe.isEmpty()) {
 Vertex v = fringe.removeFirst();
 for each edge (v,w) {
 if (v.dist() + weight(v,w) < w.dist())
 { w.dist() = v.dist() + weight(v,w); w.back() = v; }
 }
}