CS61B Lecture #31

In-class Test: Friday, 14 November 2007

Review session: 306 Soda on TUESDAY at 4:00-5:30.

Project 3 is on-line (slight delay in skeleton, though).

Today:

• Pseudo-random Numbers (Chapter 11)
• What use are random sequences?
• What are “random sequences”?
• Pseudo-random sequences.
• How to get one.
• Relevant Java library classes and methods.
• Random permutations.
Why Random Sequences?

- Choose statistical samples
- Simulations
- Random algorithms
- Cryptography:
 - Choosing random keys
 - Generating streams of random bits (e.g., SSL xor’s your data with a regeneratable, pseudo-random bit stream that only you and the recipient can generate).
- And, of course, games
What Is a “Random Sequence”?

- How about: “a sequence where all numbers occur with equal frequency”?
 - Like 1, 2, 3, 4, …?
- Well then, how about: “an unpredictable sequence where all numbers occur with equal frequency?”
 - Like 0, 0, 0, 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1,…?
- Besides, what is wrong with 0, 0, 0, 0, … anyway? Can’t that occur by random selection?
Pseudo-Random Sequences

• Even if definable, a “truly” random sequence is difficult for a computer (or human) to produce.

• For most purposes, need only a sequence that satisfies certain statistical properties, even if deterministic.

• Sometimes (e.g., cryptography) need sequence that is hard or impractical to predict.

• Pseudo-random sequence: deterministic sequence that passes some given set of statistical tests.

• For example, look at lengths of runs: increasing or decreasing contiguous subsequences.

• Unfortunately, statistical criteria to be used are quite involved. For details, see Knuth.
Generating Pseudo-Random Sequences

- Not as easy as you might think.
- Seemingly complex jumbling methods can give rise to bad sequences.
- Linear congruential method is a simple method that has withstood test of time:
 \[X_0 = \text{arbitrary seed} \]
 \[X_i = (aX_{i-1} + c) \mod m, \quad i > 0 \]
- Usually, \(m \) is large power of 2.
- For best results, want \(a \equiv 5 \mod 8 \), and \(a, c, m \) with no common factors.
- This gives generator with a period of \(m \) (length of sequence before repetition), and reasonable potency (measures certain dependencies among adjacent \(X_i \).)
- Also want bits of \(a \) to “have no obvious pattern” and pass certain other tests (see Knuth).
- Java uses \(a = 25214903917 \), \(c = 11 \), \(m = 2^{48} \), to compute 48-bit pseudo-random numbers but I haven’t checked to see how good this is.
What Can Go Wrong?

- Short periods, many impossible values: E.g., \(a, c, m\) even.

- Obvious patterns. E.g., just using lower 3 bits of \(X_i\) in Java’s 48-bit generator, to get integers in range 0 to 7. By properties of modular arithmetic,

\[
X_i \mod 8 = (25214903917X_{i-1} + 11 \mod 2^{48}) \mod 8
\]

\[
= (5(X_{i-1} \mod 8) + 3) \mod 8
\]

so we have a period of 8 on this generator; sequences like

\[
0, 1, 3, 7, 1, 2, 7, 1, 4, \ldots
\]

are impossible. This is why Java doesn’t give you the raw 48 bits.

- Bad potency leads to bad correlations.

 - E.g. Take \(c = 0, a = 65539, m = 2^{31}\), and make 3D points:

 \((X_i/S, X_{i+1}/S, X_{i+2}/S)\), where \(S\) scales to a unit cube.

 - Points will be arranged in parallel planes with voids between.

 - So, “random points” won’t ever get near many points in the cube.
Other Generators

- Additive generator:
 \[
 X_n = \begin{cases}
 \text{arbitrary value}, & n < 55 \\
 (X_{n-24} + X_{n-55}) \mod 2^e, & n \geq 55
 \end{cases}
 \]

- Other choices than 24 and 55 possible.
- This one has period of \(2^f(2^{55} - 1)\), for some \(f < e\).
- Simple implementation with circular buffer:

 \[
 \begin{align*}
 i &= (i+1) \mod 55; \\
 X[i] &= X[(i+31) \mod 55]; \quad \text{// Why +31 (55-24) instead of -24?} \\
 \text{return } X[i]; \quad \text{/* modulo } 2^{32} */
 \end{align*}
 \]

- where \(X[0 .. 54]\) is initialized to some “random” initial seed values.
Adjusting Range and Distribution

• Given raw sequence of numbers, X_i, from above methods in range (e.g.) 0 to 2^{48}, how to get uniform random integers in range 0 to $n - 1$?

• If $n = 2^k$, is easy: use top k bits of next X_i (bottom k bits not as “random”)

• For other n, be careful of slight biases at the ends. For example, if we compute $X_i/(2^{48}/n)$ using all integer division, and if $(2^{48}/n)$ doesn’t come out even, then you can get n as a result (which you don’t want).

• Easy enough to fix with floating point, but can also do with integers; one method (used by Java for type int):

```java
/** Random integer in the range 0 .. n-1, n>0. */
int nextInt (int n) {
    long X = next random long (0 ≤ X < 2^{48});
    if (n is 2^k for some k) return top k bits of X;
    int MAX = largest multiple of n that is < 2^{48};
    while (X_i >= MAX) X = next random long (0 ≤ X < 2^{48});
    return X_i / (MAX/n);
}
```
Arbitrary Bounds

- How to get arbitrary range of integers (L to U)?
- To get random float, x in range $0 \leq x < d$, compute

 \[
 \text{return } d \times \text{nextInt}(1 \ll 24) / (1 \ll 24);
 \]

- Random double a bit more complicated: need two integers to get enough bits.

 \[
 \text{long bigRand = ((long) nextInt(1<<26) \ll 27) + (long) nextInt(1<<27);}
 \]
 \[
 \text{return } d \times \text{bigRand} / (1L \ll 53);
 \]
Other Distributions

- Can also turn uniform random integers into arbitrary other distributions, like the Gaussian.

\[P(x) \]

- Curve is the desired probability distribution (\(P(x) \) is the probability that a certain random variable is \(\leq x \).)

- Choose \(y \) uniformly between 0 and 1, and the corresponding \(x \) will be distributed according to \(P \).
Computing Arbitrary Discrete Distribution

- Example from book: want integer values X_i with $\Pr(X_i = 0) = \frac{1}{12}$, $\Pr(X_i = 1) = \frac{1}{2}$, $\Pr(X_i = 2) = \frac{1}{3}$, $\Pr(X_i = 3) = \frac{1}{12}$:

- To get desired probabilities, choose floating-point number, $0 \leq R_i < 4$, and see what color you land on.

- ≤ 2 colors in each beaker $\equiv \leq 2$ colors between i and $i+1$.

```python
return (R_i % 1.0 > v[(int) R_i]) ? top[(int) R_i] : bot[R_i];
```

where

```python
v = { 1.0/3.0, 2.0/3.0, 0, 1.0/3.0 };
top = { 1, 2, 2, 1 },
bot = { 0, 1, /* ANY */ 0, 3 };}
```
Java Classes

- `Math.random()`: random double in `[0..1)`

- **Class `java.util.Random`**: a random number generator with constructors:
 - `Random()`: generator with “random” seed (based on time).
 - `Random(seed)`: generator with given starting value (reproducible).

- **Methods**
 - `nextInt(n)`: int in range `[0..n)`.
 - `nextLong()`: random 64-bit integer.
 - `nextBoolean()`, `nextFloat()`, `nextDouble()`: Next random values of other primitive types.
 - `nextGaussian()`: normal distribution with mean 0 and standard deviation 1 (“bell curve”).

- `Collections.shuffle(L, R)` for list `R` and Random `R` permutes `L` randomly (using `R`).
Shuffling

• A shuffle is a random permutation of some sequence.

• Obvious dumb technique for sorting \(N \)-element list:
 - Generate \(N \) random numbers
 - Attach each to one of the list elements
 - Sort the list using random numbers as keys.

• Can do quite a bit better:

```java
void shuffle (List L, Random R) {
    for (int i = L.size (); i > 0; i -= 1)
        swap element i-1 of L with element R.nextInt (i) of L;
}
```

• Example:

<table>
<thead>
<tr>
<th>Swap items</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>A♣</td>
<td>2♥</td>
<td>3♦</td>
<td>A♥</td>
<td>2♥</td>
<td>3♥</td>
</tr>
<tr>
<td>5 ⇔ 1</td>
<td>A♣</td>
<td>3♥</td>
<td>3♦</td>
<td>A♥</td>
<td>2♥</td>
<td>2♠</td>
</tr>
<tr>
<td>4 ⇔ 2</td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♦</td>
<td>2♣</td>
</tr>
<tr>
<td>3 ⇔ 3</td>
<td>A♣</td>
<td>3♥</td>
<td>2♥</td>
<td>A♥</td>
<td>3♦</td>
<td>2♣</td>
</tr>
<tr>
<td>2 ⇔ 0</td>
<td>2♥</td>
<td>3♥</td>
<td>A♣</td>
<td>A♥</td>
<td>3♦</td>
<td>2♣</td>
</tr>
<tr>
<td>1 ⇔ 0</td>
<td>3♥</td>
<td>2♥</td>
<td>A♣</td>
<td>A♥</td>
<td>3♦</td>
<td>2♣</td>
</tr>
</tbody>
</table>
Random Selection

- Same technique would allow us to select N items from list:

```java
/** Permute L and return sublist of K>=0 randomly
 * chosen elements of L, using R as random source. */
List select (List L, int k, Random R) {
    for (int i = L.size (); i+k > L.size (); i -= 1)
        swap element i-1 of L with element
            R.nextInt (i) of L;
    return L.sublist (L.size ()-k, L.size ());
}
```

- Not terribly efficient for selecting random sequence of K distinct integers from $[0..N)$, with $K \ll N$.
Alternative Selection Algorithm (Floyd)

/** Random sequence of M distinct integers
 * from 0..N-1, 0<=M<=N. */
IntList selectInts(int N, int M, Random R)
{
 IntList S = new IntList();

 for (int i = N-M; i < N; i += 1) {
 // All values in S are < i
 int s = R.randInt(i+1); // 0 <= s <= i < N
 if (s == S.get(k) for some k)
 // Insert value i (which can’t be there
 // yet) after the s (i.e., at a random
 // place other than the front)
 S.add (k+1, i);
 else
 // Insert random value s at front
 S.add (0, s);
 }
 return S;
}