CS61B Lecture #31

In-class Test: Friday, 14 November 2007

Review session: 306 Soda on TUESDAY at 4:00-5:30.

Project 3 is on-line (slight delay in skeleton, though).

Today:
• Pseudo-random Numbers (Chapter 11)
• What use are random sequences?
• What are "random sequences"?
• Pseudo-random sequences.
• How to get one.
• Relevant Java library classes and methods.
• Random permutations.

Why Random Sequences?
• Choose statistical samples
• Simulations
• Random algorithms
• Cryptography:
 - Choosing random keys
 - Generating streams of random bits (e.g., SSL xor's your data with a regeneratable, pseudo-random bit stream that only you and the recipient can generate).
• And, of course, games

What Is a "Random Sequence"?
• How about: "a sequence where all numbers occur with equal frequency"?
 - Like 1, 2, 3, 4, ...?
• Well then, how about: "an unpredictable sequence where all numbers occur with equal frequency"?
 - Like 0, 0, 0, 1, 1, 2, 2, 2, 2, 3, 4, 4, 0, 1, 1, 1, ...?
• Besides, what is wrong with 0, 0, 0, 0, ... anyway? Can't that occur by random selection?

Pseudo-Random Sequences
• Even if definable, a "truly" random sequence is difficult for a computer (or human) to produce.
• For most purposes, need only a sequence that satisfies certain statistical properties, even if deterministic.
• Sometimes (e.g., cryptography) need sequence that is hard or impractical to predict.
• Pseudo-random sequence: deterministic sequence that passes some given set of statistical tests.
• For example, look at lengths of runs: increasing or decreasing contiguous subsequences.
• Unfortunately, statistical criteria to be used are quite involved. For details, see Knuth.
Generating Pseudo-Random Sequences

• Not as easy as you might think.
• Seemingly complex jumbling methods can give rise to bad sequences.
• Linear congruential method is a simple method that has withstood test of time:

\[X_0 = \text{arbitrary seed} \]
\[X_i = (aX_{i-1} + c) \mod m, \quad i > 0 \]

• Usually, \(m \) is large power of 2.
• For best results, want \(a \equiv 5 \mod 8 \), and \(a, c, m \) with no common factors.
 • This gives generator with a period of \(m \) (length of sequence before repetition), and reasonable potency (measures certain dependencies among adjacent \(X_i \)).
 • Also want bits of \(a \) to "have no obvious pattern" and pass certain other tests (see Knuth).
• Java uses \(a = 25214903917 \), \(c = 11 \), \(m = 2^{48} \), to compute 48-bit pseudo-random numbers but I haven't checked to see how good this is.

What Can Go Wrong?

• Short periods, many impossible values: E.g., \(a, c, m \) even.
• Obvious patterns. E.g., just using lower 3 bits of \(X \), in Java's 48-bit generator, to get integers in range 0 to 7. By properties of modular arithmetic,

\[X_i \mod 8 = \left(25214903917X_{i-1} + 11 \mod 2^{48} \right) \mod 8 = \left(5(X_{i-1} \mod 8) + 3 \right) \mod 8 \]

so we have a period of 8 on this generator; sequences like

\[0, 1, 3, 7, 1, 2, 7, 1, 4, \ldots \]

are impossible. This is why Java doesn't give you the raw 48 bits.
• Bad potency leads to bad correlations.
 • E.g. Take \(c = 0 \), \(a = 65539 \), \(m = 2^{31} \), and make 3D points:

\[\left(\frac{X_i}{S}, \frac{X_{i+1}}{S}, \frac{X_{i+2}}{S} \right) \]

where \(S \) scales to a unit cube.
 • Points will be arranged in parallel planes with voids between.
 • So, "random points" won't ever get near many points in the cube.

Other Generators

• Additive generator:

\[X_n = \begin{cases} \text{arbitrary value}, & n < 55 \\ (X_{n-24} + X_{n-55}) \mod 2^e, & n \geq 55 \end{cases} \]

• Other choices than 24 and 55 possible.
• This one has period of \(2^f(2^{55} - 1) \), for some \(f < e \).
• Simple implementation with circular buffer:

\[
i = (i+1) \mod 55; \]
\[X[i] += X[(i+31) \mod 55]; \quad \text{// Why +31 (55-24) instead of -24?} \]
\[\text{return } X[i]; \quad \text{// modulo } 2^{32} \quad */ \]

• where \(X[0 .. 54] \) is initialized to some "random" initial seed values.

Adjusting Range and Distribution

• Given raw sequence of numbers, \(X_i \), from above methods in range (e.g.) 0 to \(2^{48} \), how to get uniform random integers in range 0 to \(n - 1 \)?
 • If \(n = 2^k \), is easy: use top \(k \) bits of next \(X_i \) (bottom \(k \) bits not as "random")
 • For other \(n \), be careful of slight biases at the ends. For example, if we compute \(X_i/(2^{48}/n) \) using all integer division, and if \((2^{48}/n) \) doesn't come out even, then you can get \(n \) as a result (which you don't want).
 • Easy enough to fix with floating point, but can also do with integers; one method (used by Java for type int):

```java
/** Random integer in the range 0 .. n-1, n>0. */
int nextInt (int n) {
    long X = next random long (0 \leq X < 2^{48});
    if (n is 2^k for some k) return top k bits of X;
    int MAX = largest multiple of n that is < 2^{48};
    while (X, \geq MAX) X = next random long (0 \leq X < 2^{48});
    return X_i / (MAX/n);
}
```

Last modified: Sun Nov 9 18:31:17 2008
Arbitrary Bounds

- How to get arbitrary range of integers (L to U)?
- To get random float, x in range $0 \leq x < d$, compute
 \[
 \text{return } d \times \text{nextInt}(1<<24) / (1<<24);
 \]
- Random double a bit more complicated: need two integers to get enough bits.
 \[
 \text{long bigRand = (long) nextInt(1<<26) << 27) + (long) nextInt(1<<27);} \]
 \[
 \text{return } d \times \text{bigRand} / (1L << 53);
 \]

Other Distributions

- Can also turn uniform random integers into arbitrary other distributions, like the Gaussian.

\[
P(x)
\]

- Curve is the desired probability distribution ($P(x)$ is the probability that a certain random variable is $\leq x$.)
- Choose y uniformly between 0 and 1, and the corresponding x will be distributed according to P.

Computing Arbitrary Discrete Distribution

- Example from book: want integer values X_i with $Pr(X_i = 0) = 1/12$, $Pr(X_i = 1) = 1/2$, $Pr(X_i = 2) = 1/3$, $Pr(X_i = 3) = 1/12$:

![Legend:
 0: 1: 2: 3:
 0: 1: 2: 3: 4]

- To get desired probabilities, choose floating-point number, $0 \leq R_i < 4$, and see what color you land on.
- ≤ 2 colors in each beaker $\equiv \leq 2$ colors between i and $i + 1$.

\[
\text{return } (R_i \% 1.0 > v[\text{int} R_i])
\]

where
\[
\begin{align*}
 v &= \{ 1.0/3.0, 2.0/3.0, 0, 1.0/3.0 \}; \\
 \text{top} &= \{ 1, 2, 2, 1 \}; \\
 \text{bot} &= \{ 0, 1, /* \text{ANY} */ 0, 3 \};
\end{align*}
\]

Java Classes

- Math.random(): random double in $[0..1)$.
- Class java.util.Random: a random number generator with constructors:
 - Random() generator with "random" seed (based on time).
 - Random(seed) generator with given starting value (reproducible).

- Methods
 - next(k) k-bit random integer
 - nextInt(n) int in range $[0..n]$
 - nextLong() random 64-bit integer.
 - nextBoolean(), nextFloat(), nextDouble() Next random values of other primitive types.
 - nextGaussian() normal distribution with mean 0 and standard deviation 1 ("bell curve").
 - Collections.shuffle(R, R) for list R and Random R permutes R randomly (using R).
Shuffling

- A shuffle is a random permutation of some sequence.
- Obvious dumb technique for sorting \(N \)-element list:
 - Generate \(N \) random numbers
 - Attach each to one of the list elements
 - Sort the list using random numbers as keys.
- Can do quite a bit better:

```java
void shuffle (List L, Random R) {
  for (int i = L.size (); i > 0; i -= 1)
    swap element i-1 of L with element R.nextInt (i) of L;
}
```
- Example:

<table>
<thead>
<tr>
<th>Swap items</th>
<th>0 1 2 3 4 5</th>
<th>Swap items</th>
<th>0 1 2 3 4 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5 (\leftrightarrow) 1</td>
<td>2 (\leftrightarrow) 0</td>
<td>2 (\leftrightarrow) 0</td>
<td></td>
</tr>
<tr>
<td>4 (\leftrightarrow) 2</td>
<td>1 (\leftrightarrow) 0</td>
<td>3 (\leftrightarrow) 2</td>
<td></td>
</tr>
</tbody>
</table>

Random Selection

- Same technique would allow us to select \(N \) items from list:

```java
/** Permute L and return sublist of \( K \geq 0 \) randomly
 * chosen elements of L, using R as random source. */
List select (List L, int k, Random R) {
  for (int i = L.size (); i+k > L.size (); i -= 1)
    swap element i-1 of L with element R.nextInt (i) of L;
  return L.sublist (L.size ()-k, L.size ());
}
```
- Not terribly efficient for selecting random sequence of \(K \) distinct integers from \([0..N)\), with \(K \ll N \).

Alternative Selection Algorithm (Floyd)

```java
/** Random sequence of M distinct integers
 * from 0..N-1, 0<=M<=N. */
IntList selectInts(int N, int M, Random R) {
  IntList S = new IntList();
  for (int i = N-M; i < N; i += 1) {
    // All values in S are < i
    int s = R.randInt(i+1); // 0 <= s <= i < N
    if (s == S.get (k) for some k)
      // Insert value i (which can't be there
      // yet) after the s (i.e., at a random
      // place other than the front)
      S.add (k+1, i);
    else
      // Insert random value s at front
      S.add (0, s);
  }
  return S;
}
```

Example

<table>
<thead>
<tr>
<th>(i)</th>
<th>(s)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>{4}</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>{2, 4}</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>{5, 2, 4}</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>{5, 8, 2, 4}</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>{5, 8, 2, 4, 9}</td>
</tr>
</tbody>
</table>

selectRandomIntegers (10, 5, R)