CS61B Lectures #27-28

Announcements:

• We’ll be running a preliminary testing run for Project #2 on Tuesday night.

Today:

- Sorting algorithms: why?
- Insertion, Shell’s, Heap, Merge sorts
- Quicksort
- Selection
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.
Purposes of Sorting

• Sorting supports searching

• Binary search standard example

• Also supports other kinds of search:
 – Are there two equal items in this set?
 – Are there two items in this set that both have the same value for property X?
 – What are my nearest neighbors?

• Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).
Some Definitions

• A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \preceq, is:
 - Total: $x \preceq y$ or $y \preceq x$ for all x, y.
 - Reflexive: $x \preceq x$;
 - Antisymmetric: $x \preceq y$ and $y \preceq x$ iff $x = y$.
 - Transitive: $x \preceq y$ and $y \preceq z$ implies $x \preceq z$.

• However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called stable.
Classifications

- **Internal sorts** keep all data in primary memory
- **External sorts** process large amounts of data in batches, keeping what won’t fit in secondary storage (in the old days, tapes).
- **Comparison-based sorting** assumes only thing we know about keys is order
- **Radix sorting** uses more information about key structure.
- **Insertion sorting** works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
- **Selection sorting** works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.
Sorting by Insertion

• Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.

• Very simple, good for small sets of data.

• With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.

• So gives us $O(N^2)$ algorithm. Can we say more?
Inversions

- Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:

```java
for (int i = 1; i < A.length; i += 1) {
    int j;
    Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
        if (A[j].compareTo(x) <= 0) /* (1) */
            break;
    }
    A[j+1] = x;
}
```

- #times (1) executes \approx how far x must move.
- If all items within K of proper places, then takes $O(KN)$ operations.
- Thus good for any amount of nearly sorted data.
- One measure of unsortedness: # of inversions: pairs that are out of order ($= 0$ when sorted, $N(N-1)/2$ when reversed).
- Each step of j decreases inversions by 1.
Shell’s sort

Idea: Improve insertion sort by first sorting distant elements:

• First sort subsequences of elements \(2^k - 1\) apart:
 - sort items \#0, \(2^k - 1\), \(2(2^k - 1)\), \(3(2^k - 1)\), \ldots, then
 - sort items \#1, \(1 + 2^k - 1\), \(1 + 2(2^k - 1)\), \(1 + 3(2^k - 1)\), \ldots, then
 - sort items \#2, \(2 + 2^k - 1\), \(2 + 2(2^k - 1)\), \(2 + 3(2^k - 1)\), \ldots, then
 - etc.
 - sort items \#2^k - 2, \(2(2^k - 1) - 1\), \(3(2^k - 1) - 1\), \ldots,
 - Each time an item moves, can reduce \#inversions by as much as \(2^k + 1\).

• Now sort subsequences of elements \(2^{k-1} - 1\) apart:
 - sort items \#0, \(2^{k-1} - 1\), \(2(2^{k-1} - 1)\), \(3(2^{k-1} - 1)\), \ldots, then
 - sort items \#1, \(1 + 2^{k-1} - 1\), \(1 + 2(2^{k-1} - 1)\), \(1 + 3(2^{k-1} - 1)\), \ldots,
 - etc.

• End at plain insertion sort \((2^0 = 1\) apart), but with most inversions gone.

• Sort is \(\Theta(N^{1.5})\) (take CS170 for why!).
Example of Shell’s Sort

<table>
<thead>
<tr>
<th>I</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>10</td>
</tr>
<tr>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

I: Inversions left.

C: Comparisons needed to sort subsequences.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.

- Really bad idea on a simple list or vector.
- But we’ve already seen it in action: use heap.
- **Gives** $O(N \lg N)$ algorithm (N remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

```
original:  19  0  -1  7  23  2  42
heapified: 42  23  19  7  0  2  -1
           23  7  19  -1  0  2  42
           19  7  2  -1  0  23  42
           7  0  2  -1  19  23  42
           2  0  -1  7  19  23  42
           0  -1  2  7  19  23  42
           -1  0  2  7  19  23  42
```
Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.

- Already seen analysis: $\Theta(N \lg N)$.

- **Good for external sorting:**
 - First break data into small enough chunks to fit in memory and sort.
 - Then repeatedly merge into bigger and bigger sequences.
 - Can merge K sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.

- For internal sorting, can use *binomial comb* to orchestrate:
Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

0 elements processed

1 element processed

2 elements processed

3 elements processed

4 elements processed

6 elements processed

11 elements processed
Quicksort: Speed through Probability

Idea:

- Partition data into pieces: everything $> a$ pivot value at the high end of the sequence to be sorted, and everything \leq on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.
Example of Quicksort

• In this example, we continue until pieces are size ≤ 4.

• Pivots for next step are starred. Arrange to move pivot to dividing line each time.

• Last step is insertion sort.

```
16 10 13 18 -4 -7 12 -5 19 15 0 22 29 34 -1*
-4 -5 -7 -1 18 13 12 10 19 15 0 22 29 34 16*
-4 -5 -7 -1 15 13 12* 10 0 16 19* 22 29 34 18
-4 -5 -7 -1 10 0 12 15 13 16 18 19 29 34 22
```

• Now everything is “close to” right, so just do insertion sort:

```
-7 -5 -4 -1 0 10 12 13 15 16 18 19 22 29 34
```
Performance of Quicksort

• Probabalistic time:
 - If choice of pivots good, divide data in two each time: $\Theta(N \lg N)$ with a good constant factor relative to merge or heap sort.
 - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
 - $\Omega(N \lg N)$ in best case, so insertion sort better for nearly ordered input sets.

• Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!
Quick Selection

The Selection Problem: for given k, find k^{th} smallest element in data.

- Obvious method: sort, select element #k, time $\Theta(N \lg N)$.
- If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
 - Go through array, keep smallest k items.
- Get probably $\Theta(N)$ time for all k by adapting quicksort:
 - Partition around some pivot, p, as in quicksort, arrange that pivot ends up at dividing line.
 - Suppose that in the result, pivot is at index m, all elements \leq pivot have indicies $\leq m$.
 - If $m = k$, you’re done: p is answer.
 - If $m > k$, recursively select k^{th} from left half of sequence.
 - If $m < k$, recursively select $(k - m - 1)^{th}$ from right half of sequence.
Selection Example

Problem: Find just item #10 in the sorted version of array:

Initial contents:

```
51  60  21  -4  37  4  49  10  40*  59  0  13  2  39  11  46  31
0
```

Looking for #10 to left of pivot 40:

```
13  31  21  -4  37  4*  11  10  39  2  0  40  59  51  49  46  60
0
```

Looking for #6 to right of pivot 4:

```
-4  0  2  4  37  13  11  10  39  21  31*  40  59  51  49  46  60
4
```

Looking for #1 to right of pivot 31:

```
-4  0  2  4  21  13  11  10  31  39  37  40  59  51  49  46  60
9
```

Just two elements; just sort and return #1:

```
-4  0  2  4  21  13  11  10  31  37  39  40  59  51  49  46  60
9
```

Result: 39
Selection Performance

• For this algorithm, if \(m \) roughly in middle each time, cost is

\[
C(N) = \begin{cases}
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise.}
\end{cases}
\]

\[
= N + N/2 + \ldots + 1 \\
= 2N - 1 \in \Theta(N)
\]

• But in worst case, get \(\Theta(N^2) \), as for quicksort.

• By another, non-obvious algorithm, can get \(\Theta(N) \) worst-case time for all \(k \) (take CS170).
Better than $N \lg N$?

- Can prove that if all you can do to keys is compare them then sorting must take $\Omega(N \lg N)$.

- Basic idea: there are $N!$ possible ways the input data could be scrambled.

- Therefore, your program must be prepared to do $N!$ different combinations of move operations.

- Therefore, there must be $N!$ possible combinations of outcomes of all the if tests in your program (we’re assuming that comparisons are 2-way).

- Since each if test goes two ways, number of possible different outcomes for k if tests is 2^k.

- Thus, need enough tests so that $2^k > N!$, which means $k \in \Omega(\lg N!)$.

- Using Stirling’s approximation,

 $$m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right),$$

 this tells us that

 $$k \in \Omega(N \lg N).$$
Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- For example, how can we sort a set of N integer keys whose values range from 0 to kN, for some small constant k?
- One technique: count the number of items < 1, < 2, etc.
- If $M_p =$ #items with value $< p$, then in sorted order, the j^{th} item with value p must be $#M_p + j$.
- Gives linear-time algorithm.
Distribution Counting Example

• Suppose all items are between 0 and 9 as in this example:

| 7 0 4 0 9 1 9 1 9 5 3 7 3 1 6 7 4 2 0 |

| 3 3 1 2 2 1 1 3 0 3 |
| 0 1 2 3 4 5 6 7 8 9 |

| 0 3 6 7 9 11 12 13 16 16 |
| < 0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 |

| 0 0 0 1 1 1 2 3 3 4 4 5 6 7 7 7 9 9 9 |
| 0 3 6 9 11 12 13 16 |

• “Counts” line gives # occurrences of each key.
• “Running sum” gives cumulative count of keys ≤ each value…
• …which tells us where to put each key:
• The first instance of key k goes into slot m, where m is the number of key instances that are $< k$.
Radix Sort

Idea: Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort)
- LSD radix sort is venerable: used for punched cards.

Initial: set, cat, cad, con, bat, can, be, let, bet

Pass 1 (by char #2)
be, cad, con, set, cat, bat, let, bet

Pass 2 (by char #1)
cad, can, cat, bat, be, set, let, bet, con

Pass 3 (by char #0)
bet, bat, con, can, set, cat, let, set

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate
- But, can stop processing 1-element lists

<table>
<thead>
<tr>
<th>A</th>
<th>posn</th>
</tr>
</thead>
<tbody>
<tr>
<td>* set, cat, cad, con, bat, can, be, let, bet</td>
<td>0</td>
</tr>
<tr>
<td>* bat, be, bet / cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / * be, bet / cat, cad, con, can / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, can / con / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / cad / can / cat / con / let / set</td>
<td></td>
</tr>
</tbody>
</table>
Performance of Radix Sort

• Radix sort takes $\Theta(B)$ time where B is total size of the key data.
• Have measured other sorts as function of #records.
• How to compare?
• To have N different records, must have keys at least $\Theta(\lg N)$ long [why?]
• Furthermore, comparison actually takes time $\Theta(K)$ where K is size of key in worst case [why?]
• So $N \lg N$ comparisons really means $N(\lg N)^2$ operations.
• While radix sort takes $B = N \lg N$ time.
• On the other hand, must work to get good constant factors with radix sort.
And Don’t Forget Search Trees

Idea: A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: N insertions in time $\lg N$ each, plus $\Theta(N)$ to traverse, gives

$$\Theta(N + N \lg N) = \Theta(N \lg N)$$
Summary

- **Insertion sort**: $\Theta(Nk)$ comparisons and moves, where k is maximum amount data is displaced from final position.
 - Good for small datasets or almost ordered data sets.
- **Quicksort**: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- **Merge sort**: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- **Heapsort, treesort with guaranteed balance**: $\Theta(N \lg N)$ guaranteed.
- **Radix sort, distribution sort**: $\Theta(B)$ (number of bytes). Also good for external sorting.