CS61B Lectures #27-28

Announcements:
• We’ll be running a preliminary testing run for Project #2 on Tuesday night.

Today:
- Sorting algorithms: why?
- Insertion, Shell’s, Heap, Merge sorts
- Quicksort
- Selection
- Distribution counting, radix sorts

Readings: Today: DS(IJ), Chapter 8; Next topic: Chapter 9.

Purposes of Sorting
• Sorting supports searching
• Binary search standard example
• Also supports other kinds of search:
 - Are there two equal items in this set?
 - Are there two items in this set that both have the same value for property X?
 - What are my nearest neighbors?
• Used in numerous unexpected algorithms, such as convex hull (smallest convex polygon enclosing set of points).

Some Definitions
• A sort is a permutation (re-arrangement) of a sequence of elements that brings them into order, according to some total order. A total order, \(\preceq \), is:
 - Total: \(x \preceq y \) or \(y \preceq x \) for all \(x, y \).
 - Reflexive: \(x \preceq x \).
 - Antisymmetric: \(x \preceq y \) and \(y \preceq x \) iff \(x = y \).
 - Transitive: \(x \preceq y \) and \(y \preceq z \) implies \(x \preceq z \).
• However, our orderings may allow unequal items to be equivalent:
 - E.g., can be two dictionary definitions for the same word: if entries sorted only by word, then sorting could put either entry first.
 - A sort that does not change the relative order of equivalent entries is called stable.

Classifications
• Internal sorts keep all data in primary memory
• External sorts process large amounts of data in batches, keeping what won’t fit in secondary storage (in the old days, tapes).
• Comparison-based sorting assumes only thing we know about keys is order
• Radix sorting uses more information about key structure.
• Insertion sorting works by repeatedly inserting items at their appropriate positions in the sorted sequence being constructed.
• Selection sorting works by repeatedly selecting the next larger (smaller) item in order and adding it one end of the sorted sequence being constructed.
Sorting by Insertion

- Simple idea:
 - starting with empty sequence of outputs.
 - add each item from input, inserting into output sequence at right point.
- Very simple, good for small sets of data.
- With vector or linked list, time for find + insert of one item is at worst $\Theta(k)$, where k is # of outputs so far.
- So gives us $O(N^2)$ algorithm. Can we say more?

Inversions

- Can run in $\Theta(N)$ comparisons if already sorted.
- Consider a typical implementation for arrays:

  ```java
  for (int i = 1; i < A.length; i += 1) {
    int j; 
    Object x = A[i];
    for (j = i-1; j >= 0; j -= 1) {
      if (A[j].compareTo (x) <= 0) /* (1) */
        break;
    } 
    A[j+1] = x;
  }
  
  #times (1) executes $\approx$ how far $x$ must move.
  If all items within $K$ of proper places, then takes $O(KN)$ operations.
  Thus good for any amount of nearly sorted data.
  One measure of unsortedness: # of inversions: pairs that are out of order (= 0 when sorted, $N(N-1)/2$ when reversed).
  Each step of $j$ decreases inversions by 1.

Shell's sort

Idea: Improve insertion sort by first sorting distant elements:

- First sort subsequences of elements $2^k - 1$ apart:
  - sort items #0, $2^k - 1$, $2(2^k - 1)$, $3(2^k - 1)$, ..., then
  - sort items #1, $1 + 2^k - 1$, $1 + 2(2^k - 1)$, $1 + 3(2^k - 1)$, ..., then
  - sort items #2, $2 + 2^k - 1$, $2 + 2(2^k - 1)$, $2 + 3(2^k - 1)$, ..., then
  - etc.
  - sort items #2$^k$ - 2, $2(2^k - 1) - 1$, $3(2^k - 1) - 1$, ..., 
  - Each time an item moves, can reduce #inversions by as much as $2^k + 1$.
- Now sort subsequences of elements $2^{k-1} - 1$ apart:
  - sort items #0, $2^{k-1} - 1$, $2(2^{k-1} - 1)$, $3(2^{k-1} - 1)$, ..., then
  - sort items #1, $1 + 2^{k-1} - 1$, $1 + 2(2^{k-1} - 1)$, $1 + 3(2^{k-1} - 1)$, ..., 
  - etc.
  - End at plain insertion sort ($2^0 = 1$ apart), but with most inversions gone.
  - Sort is $\Theta(N^{1.5})$ (take CS170 for why!).

Example of Shell's Sort

<table>
<thead>
<tr>
<th>#I</th>
<th>#C</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>91</td>
<td>10</td>
</tr>
<tr>
<td>42</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

I: Inversions left.
C: Comparisons needed to sort subsequences.
Sorting by Selection: Heapsort

Idea: Keep selecting smallest (or largest) element.
- Really bad idea on a simple list or vector.
- But we've already seen it in action: use heap.
- Gives $O(N \log N)$ algorithm ($N$ remove-first operations).
- Since we remove items from end of heap, we can use that area to accumulate result:

<table>
<thead>
<tr>
<th>Original</th>
<th>Heapified</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 0 -1 7 23 2 42</td>
<td>23 7 19 0 2 42</td>
</tr>
</tbody>
</table>

Merge Sorting

Idea: Divide data in 2 equal parts; recursively sort halves; merge results.
- Already seen analysis: $\Theta(N \log N)$.
- Good for external sorting:
  - First break data into small enough chunks to fit in memory and sort.
  - Then repeatedly merge into bigger and bigger sequences.
  - Can merge $K$ sequences of arbitrary size on secondary storage using $\Theta(K)$ storage.
- For internal sorting, can use binomial comb to orchestrate:

Illustration of Internal Merge Sort

L: (9, 15, 5, 3, 0, 6, 10, -1, 2, 20, 8)

<table>
<thead>
<tr>
<th>Processed</th>
<th>Sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 elements</td>
<td>0: (9)</td>
</tr>
<tr>
<td>1 element</td>
<td>1: (9, 15)</td>
</tr>
<tr>
<td>2 elements</td>
<td>2: (3, 5, 9, 15)</td>
</tr>
<tr>
<td>3 elements</td>
<td>3: (-1, 0, 3, 5, 6, 9, 10, 15)</td>
</tr>
</tbody>
</table>

Quicksort: Speed through Probability

Idea:
- Partition data into pieces: everything $> a$ pivot value at the high end of the sequence to be sorted, and everything $\leq$ on the low end.
- Repeat recursively on the high and low pieces.
- For speed, stop when pieces are “small enough” and do insertion sort on the whole thing.
- Reason: insertion sort has low constant factors. By design, no item will move out of its will move out of its piece [why?], so when pieces are small, #inversions is, too.
- Have to choose pivot well. E.g.: median of first, last and middle items of sequence.
Example of Quicksort

• In this example, we continue until pieces are size ≤ 4.
• Pivots for next step are starred. Arrange to move pivot to dividing line each time.
• Last step is insertion sort.

```
16 10 13 18 -4 -7 12 -5 19 -4 15 0 22 29 34 -1*
-4 -5 -7 -1 18 13 12 10 19 15 0 22 29 34 16*
-4 -5 -7 -1 15 13 12* 10 0 16 19* 22 29 34 18
-4 -5 -7 -1 10 0 12 15 13 16 18 19 29 34 22
```

• Now everything is "close to" right, so just do insertion sort:

```
-7 -5 -4 -1 0 10 12 13 15 16 18 19 22 29 34
```

Performance of Quicksort

• Probabalistic time:
  - If choice of pivots good, divide data in two each time: $\Theta(N \log N)$ with a good constant factor relative to merge or heap sort.
  - If choice of pivots bad, most items on one side each time: $\Theta(N^2)$.
  - $\Omega(N \log N)$ in best case, so insertion sort better for nearly ordered input sets.
• Interesting point: randomly shuffling the data before sorting makes $\Omega(N^2)$ time very unlikely!

Quick Selection

The Selection Problem: for given $k$, find $k^{th}$ smallest element in data.

• Obvious method: sort, select element #$k$, time $\Theta(N \log N)$.
• If $k \leq$ some constant, can easily do in $\Theta(N)$ time:
  - Go through array, keep smallest $k$ items.
• Get probably $\Theta(N)$ time for all $k$ by adapting quicksort:
  - Partition around some pivot, $p$, as in quicksort, arrange that pivot ends up at dividing line.
  - Suppose that in the result, pivot is at index $m$, all elements $\leq$ pivot have indices $\leq m$.
  - If $m = k$, you're done: $p$ is answer.
  - If $m > k$, recursively select $k^{th}$ from left half of sequence.
  - If $m < k$, recursively select $(k - m - 1)^{th}$ from right half of sequence.

Selection Example

Problem: Find just item #10 in the sorted version of array:

```
Initial contents: 51 60 21 -4 37 4 49 10 40* 59 0 13 2 39 11 46 31
0
Looking for #10 to left of pivot 40: 13 31 21 -4 37 4* 11 10 39 2 0 40 59 51 49 46 60
0
Looking for #6 to right of pivot 4: -4 0 2 4 37 13 11 10 39 21 31* 40 59 51 49 46 60
4
Looking for #1 to right of pivot 31: -4 0 2 4 21 13 11 10 31 39 37 40 59 51 49 46 60
9
Just two elements: just sort and return #1: -4 0 2 4 21 13 11 10 31 37 39 40 59 51 49 46 60
9
Result: 39
```
Selection Performance

- For this algorithm, if \( m \) roughly in middle each time, cost is

\[
C(N) = \begin{cases} 
1, & \text{if } N = 1, \\
N + C(N/2), & \text{otherwise.}
\end{cases}
\]

\[= N + N/2 + \ldots + 1 = 2N - 1 \in \Theta(N)\]

- But in worst case, get \( \Theta(N^2) \), as for quicksort.
- By another, non-obvious algorithm, can get \( \Theta(N) \) worst-case time for all \( k \) (take CS170).

Better than \( N \lg N \)?

- Can prove that if all you can do to keys is compare them then sorting must take \( \Omega(N \lg N) \).
- Basic idea: there are \( N! \) possible ways the input data could be scrambled.
- Therefore, your program must be prepared to do \( N! \) different combinations of move operations.
- Therefore, there must be \( N! \) possible combinations of outcomes of all the if tests in your program (we're assuming that comparisons are 2-way).
- Since each if test goes two ways, number of possible different outcomes for \( k \) if tests is \( 2^k \).
- Thus, need enough tests so that \( 2^k > N! \), which means \( k \in \Omega(\lg N!) \).
- Using Stirling's approximation,

\[
m! \in \sqrt{2\pi m} \left(\frac{m}{e}\right)^m \left(1 + \Theta\left(\frac{1}{m}\right)\right),
\]

this tells us that

\[k \in \Omega(N \lg N)\].

Beyond Comparison: Distribution Counting

- But suppose can do more than compare keys?
- For example, how can we sort a set of \( N \) integer keys whose values range from 0 to \( kN \), for some small constant \( k \)?
- One technique: count the number of items \( < 1 \), \( < 2 \), etc.
- If \( M_p \) = #items with value \( < p \), then in sorted order, the \( j \)th item with value \( p \) must be \( #M_p + j \).
- Gives linear-time algorithm.

Distribution Counting Example

- Suppose all items are between 0 and 9 as in this example:

| 7 | 0 | 4 | 0 | 9 | 1 | 9 | 1 | 9 | 5 | 3 | 7 | 3 | 1 | 6 | 7 | 4 | 2 | 0 |
| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Counts

<table>
<thead>
<tr>
<th>0</th>
<th>3</th>
<th>6</th>
<th>7</th>
<th>9</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 0</td>
<td>&lt; 1</td>
<td>&lt; 2</td>
<td>&lt; 3</td>
<td>&lt; 4</td>
<td>&lt; 5</td>
<td>&lt; 6</td>
<td>&lt; 7</td>
<td>&lt; 8</td>
</tr>
</tbody>
</table>

Running sum

| 0 | 0 | 0 | 1 | 1 | 1 | 2 | 3 | 3 | 4 | 4 | 5 | 6 | 7 | 7 | 9 | 9 | 9 |
| 0 | 3 | 6 | 9 | 11 | 12 | 13 | 16 |

- "Counts" line gives # occurrences of each key.
- "Running sum" gives cumulative count of keys \( \leq \) each value...
- ...which tells us where to put each key:
- The first instance of key \( k \) goes into slot \( m \), where \( m \) is the number of key instances that are \( < k \).
Radix Sort

**Idea:** Sort keys one character at a time.

- Can use distribution counting for each digit.
- Can work either right to left (LSD radix sort) or left to right (MSD radix sort).
- LSD radix sort is venerable: used for punched cards.

**Initial:** set, cat, cad, con, bat, can, be, let, bet

<table>
<thead>
<tr>
<th>Pass 1 (by char #2)</th>
<th>Pass 2 (by char #1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>be, cad, con, set</td>
<td>bat, bet, cat, cad, con, can, can, con, let, set</td>
</tr>
<tr>
<td>bat, let, bet, bat</td>
<td>bat, be, bet, cat, cad, con, can, con, let, set</td>
</tr>
</tbody>
</table>

**Pass 3 (by char #0):**

<table>
<thead>
<tr>
<th>be, bat, can, con, set, cat, let, set</th>
</tr>
</thead>
<tbody>
<tr>
<td>bat, bet, cad, con, can, con, let, set</td>
</tr>
</tbody>
</table>

**Performance of Radix Sort**

- Radix sort takes $\Theta(B)$ time where $B$ is total size of the key data.
- Have measured other sorts as function of #records.
- How to compare?
- To have $N$ different records, must have keys at least $\Theta(lg N)$ long [why?]
- Furthermore, comparison actually takes time $\Theta(K)$ where $K$ is size of key in worst case [why?]
- So $N lg N$ comparisons really means $N(lg N)^2$ operations.
- While radix sort takes $B = N lg N$ time.
- On the other hand, must work to get good constant factors with radix sort.

MSD Radix Sort

- A bit more complicated: must keep lists from each step separate.
- But, can stop processing 1-element lists.

<table>
<thead>
<tr>
<th>$A$</th>
<th>posn</th>
</tr>
</thead>
<tbody>
<tr>
<td>set, cat, cad, con, bat, can, be, let, bet</td>
<td>0</td>
</tr>
<tr>
<td>bat, be, bet / cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / * be, bet / cat, cad, con, can / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, con, can / let / set</td>
<td>1</td>
</tr>
<tr>
<td>bat / be / bet / * cat, cad, can / con / let / set</td>
<td>2</td>
</tr>
<tr>
<td>bat / be / bet / cat / con / cat / con / let / set</td>
<td></td>
</tr>
</tbody>
</table>

And Don't Forget Search Trees

**Idea:** A search tree is in sorted order, when read in inorder.

- Need balance to really use for sorting [next topic].
- Given balance, same performance as heapsort: $N$ insertions in time $lg N$ each, plus $\Theta(N)$ to traverse, gives
  $\Theta(N + N lg N) = \Theta(N lg N)$
Summary

- **Insertion sort**: $\Theta(Nk)$ comparisons and moves, where $k$ is maximum amount of data is displaced from final position.
  - Good for small datasets or almost ordered data sets.
- **Quicksort**: $\Theta(N \lg N)$ with good constant factor if data is not pathological. Worst case $O(N^2)$.
- **Merge sort**: $\Theta(N \lg N)$ guaranteed. Good for external sorting.
- **Heapsort, treesort with guaranteed balance**: $\Theta(N \lg N)$ guaranteed.
- **Radix sort, distribution sort**: $\Theta(B)$ (number of bytes). Also good for external sorting.