Today: Hashing (Data Structures Chapter 7).

Next topic: Sorting (Data Structures Chapter 8).

Back to Simple Search: Hashing

- Linear search is OK for small data sets, bad for large.
- So linear search would be OK if we could rapidly narrow the search to a few items.
- Suppose that in constant time could put any item in our data set into a numbered bucket, where # buckets stays within a constant factor of # keys.
- Suppose also that buckets contain roughly equal numbers of keys.
- Then search would be constant time.

Hash functions

- To do this, must have way to convert key to bucket number: a hash function.
- Example:
 - $N = 200$ data items.
 - keys are longs, evenly spread over the range $0..2^{63} - 1$.
 - Want to keep maximum search to $L = 2$ items.
 - Use hash function $h(K) = K \% M$, where $M = N/L = 100$ is the number of buckets: $0 \leq h(K) < M$.
 - So 100232, 433, and 10002332482 go into different buckets, but 10, 400210, and 210 all go into the same bucket.

External chaining

- Array of M buckets.
- Each bucket is a list of data items.
 - Not all buckets have same length, but average is $N/M = L$, the load factor.
 - To work well, hash function must avoid collisions: keys that “hash” to equal values.
Open Addressing

- Idea: Put one data item in each bucket.
- When there is a collision, and bucket is full, just use another.
- Various ways to do this:
 - Linear probes: If there is a collision at \(h(K) \), try \(h(K) + m, h(K) + 2m, \) etc. (wrap around at end).
 - Quadratic probes: \(h(K) + m, h(K) + m^2, \) etc.
 - Double hashing: \(h(K) + h'(K), h(K) + 2h'(K), \) etc.
- Example: \(h(K) = K \% M \), with \(M = 10 \), linear probes with \(m = 1 \).
 - Add 1, 2, 11, 3, 102, 9, 18, 108, 309 to empty table.

- Things can get slow, even when table is far from full.
- Lots of literature on this technique, but
- Personally, I just settle for external chaining.

Filling the Table

- To get (likely to be) constant-time lookup, need to keep \#buckets within constant factor of \#items.
- So resize table when load factor gets higher than some limit.
- In general, must re-hash all table items.
- Still, this operation constant time per item,
- So by doubling table size each time, get constant amortized time for insertion and lookup
- (Assuming, that is, that our hash function is good).

Hash Functions: Strings

- For String, "s_0s_1 \cdots s_{n-1}" want function that takes all characters and their positions into account.
- What's wrong with \(s_0 + s_1 + \cdots + s_{n-1} \)?
- For strings, Java uses
 \[
 h(s) = s_0 \cdot 31^{n-1} + s_1 \cdot 31^{n-2} + \cdots + s_{n-1}
 \]
 computed modulo \(2^{32} \) as in Java int arithmetic.
- To convert to a table index in \(0 \ldots N - 1 \), compute \(h(s) \% N \) (but don't use table size that is multiple of 31!)
- Not as hard to compute as you might think; don't even need multiplication!
 \[
 \text{int } r; r = 0; \\
 \text{for (int } i = 0; i < \text{s.length }(); i += 1) \\
 \text{r }= (r << 5) - r + \text{s.charAt } (i);
 \]

Hash Functions: Other Data Structures I

- Lists (ArrayList, LinkedList, etc.) are analogous to strings: e.g., Java uses
 \[
 \text{hashCode }= 1; \text{ Iterator } i = \text{list.iterator }(); \\
 \text{while (i.hasNext }) \{ \\
 \text{Object } \text{obj }= \text{i.next }(); \\
 \text{hashCode }= \\
 31*\text{hashCode} + \text{(obj==null } ? 0 : \text{obj.hashCode }()); \\
 \}
 \]
- Can limit time spent computing hash function by not looking at entire list. For example: look only at first few items (if dealing with a List or SortedSet).
- Causes more collisions, but does not cause equal things to go to different buckets.
Hash Functions: Other Data Structures II

- Recursively defined data structures ⇒ recursively defined hash functions.
- For example, on a binary tree, one can use something like

  ```java
  hash(T):
  if (T == null)
    return 0;
  else return someHashFunction (T.label ())
    + 255 * hash(T.left ())
    + 255*255 * hash(T.right ());
  ```
- Can use address of object ("hash on identity") if distinct (!=) objects are never considered equal.
- But careful! Won’t work for Strings, because .equal Strings could be in different buckets:

  ```java
  String H = "Hello",
  S1 = H + ", world!",
  S2 = "Hello, world!";
  ```
- Here S1.equals(S2), but S1 !!= S2.

Characteristics

- Assuming good hash function, add, lookup, deletion take Θ(1) time, amortized.
- Good for cases where one looks up equal keys.
- Usually bad for range queries: "Give me every name between Martin and Napoli." [Why?]
- But sometimes OK, if hash function is monotonic (i.e., when key k1 > k2, then h(k1) ≥ h(k2)). For example,
 - Items are time-stamped records; key is the time.
 - Hashing function is to have one bucket for every hour.
- Hashing is probably not a good idea for small sets that you rapidly create and discard [why?]

Comparing Search Structures

Here, N is #items, k is #answers to query.

<table>
<thead>
<tr>
<th>Function</th>
<th>Unordered List</th>
<th>Sorted Array</th>
<th>Bushey Search Tree</th>
<th>"Good" Hash Table</th>
<th>Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>find</td>
<td>Θ(N)</td>
<td>Θ(lg N)</td>
<td>Θ(lg N)</td>
<td>Θ(1)</td>
<td>Θ(N)</td>
</tr>
<tr>
<td>add</td>
<td>Θ(1)</td>
<td>Θ(N)</td>
<td>Θ(lg N)</td>
<td>Θ(1)</td>
<td>Θ(lg N)</td>
</tr>
<tr>
<td>range query</td>
<td>Θ(N)</td>
<td>Θ(k + lg N)</td>
<td>Θ(k + lg N)</td>
<td>Θ(N)</td>
<td>Θ(N)</td>
</tr>
<tr>
<td>find largest</td>
<td>Θ(N)</td>
<td>Θ(1)</td>
<td>Θ(lg N)</td>
<td>Θ(N)</td>
<td>Θ(1)</td>
</tr>
<tr>
<td>remove largest</td>
<td>Θ(N)</td>
<td>Θ(1)</td>
<td>Θ(lg N)</td>
<td>Θ(N)</td>
<td>Θ(lg N)</td>
</tr>
</tbody>
</table>

What Java Provides

- In class Object, is function hashCode().
- By default, returns address of this, or something similar.
- Can override it for your particular type.
- For reasons given on last slide, is overridden for type String, as well as many types in the Java library, like all kinds of List.
- The types Hashable, HashSet, and HashMap use hashCode to give you fast look-up of objects.

```java
HashMap<KeyType,ValueType> map =
  new HashMap<KeyType,ValueType> (approximate size, load factor);
map.put (key, value); // Map KEY -> VALUE.
... map.get (someKey)
  // VALUE last mapped to by SOMEKEY.
... map.containsKey (someKey)
  // Is SOMEKEY mapped?
... map.keySet () // All keys in MAP (a Set)
```