CS61B Lecture #15

Announcements:
• Please use bug-submit for code problems.
• Watch the newsgroup and class web site for updates, hints, useful
new utilities, etc.

Readings for Today: Data Structures (Into Java), Chapter 1;

Readings for next Topics: Data Structures, Chapter 2-4

What Are the Questions?
• Cost is a principal concern throughout engineering:
 “An engineer is someone who can do for a dime what any fool
can do for a dollar.”
• Cost can mean
 - Operational cost (for programs, time to run, space requirements).
 - Development costs: How much engineering time? When deliv-
ered?
 - Costs of failure: How robust? How safe?
• Is this program fast enough? Depends on:
 - For what purpose;
 - What input data.
• How much space (memory, disk space)?
 - Again depends on what input data.
• How will it scale, as input gets big?

Enlightening Example

Problem: Scan a text corpus (say 10^7 bytes or so), and find and print
the 20 most frequently used words, together with counts of how often
they occur.
• Solution 1 (Knuth): Heavy-Duty data structures
 - Hash Trie implementation, randomized placement, pointers ga-
lore, several pages long.
• Solution 2 (Doug McIlroy): UNIX shell script:
 tr -c -s '[:alpha:]' '[]*]' < FILE | \sort | \uniq -c | \sort -n -r -k 1,1 | \sed 20q
• Which is better?
 - #1 is much faster,
 - but #2 took 5 minutes to write and processes 20MB in 1 minute.
 - I pick #2.
• In most cases, anything will do: Keep It Simple.

Cost Measures (Time)

• Wall-clock or execution time
 - You can do this at home:
 time java FindPrimes 1000
 - Advantages: easy to measure, meaning is obvious.
 - Appropriate where time is critical (real-time systems, e.g.).
 - Disadvantages: applies only to specific data set, compiler, ma-
chine, etc.
• Number of times certain statements are executed:
 - Advantages: more general (not sensitive to speed of machine).
 - Disadvantages: doesn’t tell you actual time, still applies only to
specific data sets.
• Symbolic execution times:
 - That is, formulas for execution times or statement counts in
terms of input size.
 - Advantages: applies to all inputs, makes scaling clear.
 - Disadvantage: practical formula must be approximate, may tell
very little about actual time.
Asymptotic Cost

• Symbolic execution time lets us see shape of the cost function.
• Since we are approximating anyway, pointless to be precise about certain things:
 - Behavior on small inputs:
 * Can always pre-calculate results some results.
 * Times for small inputs not usually important.
 - Constant factors (as in "off by factor of 2"):
 * Just changing machines causes constant-factor change.
• How to abstract away from (i.e., ignore) these things?

Handy Tool: Order Notation

• Idea: Don’t try to produce specific functions that specify size, but rather families of similar functions.
• Say something like "f is bounded by g if it is in g’s family."
• For any function \(g(x) \), the functions \(2g(x) \), \(1000g(x) \), or for any \(K > 0 \), \(K \cdot g(x) \), all have the same “shape”. So put all of them into g’s family.
• Any function \(h(x) \) such that \(h(x) = K \cdot g(x) \) for \(x > M \) (for some constant \(M \)) has g’s shape “except for small values.” So put all of these in g’s family.
• If we want upper limits, throw in all functions that are everywhere \(\leq \) some other member of g’s family. Call this family \(O(g) \) or \(O(g(n)) \).
• Or, if we want lower limits, throw in all functions that are everywhere \(\geq \) some other member of g’s family. Call this family \(\Omega(g) \).
• Finally, define \(\Theta(g) = O(g) \cap \Omega(g) \)—the set of functions bracketed by members of g’s family.

Big Oh

• Goal: Specify bounding from above.

\[M = 1 \]

Here, \(f(x) \leq 2g(x) \) as long as \(x > 1 \),

So \(f(x) \) is in g’s upper-bound family, written

\[f(x) \in O(g(x)), \]

... even though \(f(x) > g(x) \) everywhere.

Big Omega

• Goal: Specify bounding from below:

\[M = 1 \]

Here, \(f'(x) \geq \frac{1}{2}g(x) \) as long as \(x > 1 \),

So \(f'(x) \) is in g’s lower-bound family, written

\[f'(x) \in \Omega(g(x)), \]

... even though \(f(x) < g(x) \) everywhere.

In fact, we also have \(f'(x) \in O(g(x)) \) and \(f(x) \in \Omega(g(x)) \) and so we can also write

\[f(x), f'(x) \in \Theta(g(x)). \]
Using the Notation

• Can use this order notation for any kind of real-valued function.
• We will use them to describe cost functions. Example:

```java
/** Find position of X in list L. Return -1 if not found */
int find (List L, Object X) {
    int c;
    for (c = 0; L != null; L = L.next, c += 1)
        if (X.equals (L.head)) return c;
    return -1;
}
```

• Choose representative operation: number of .equals tests.
• If N is length of L, then loop does at most N tests: worst-case time is N tests.
• In fact, total # of instructions executed is roughly proportional to N in the worst case, so can also say worst-case time is $O(N)$, regardless of units used to measure.
• Use $N > M$ provision (in defn. of $O(\cdot)$) to handle empty list.

Some Intuition on Meaning of Growth

• How big a problem can you solve in a given time?
• In the following table, left column shows time in microseconds to solve a given problem as a function of problem size N.
• Entries show the size of problem that can be solved in a second, hour, month (31 days), and century, for various relationships between time required and problem size.
• $N = \text{problem size}$

<table>
<thead>
<tr>
<th>Time (μsec) for problem size N</th>
<th>1 second</th>
<th>Max. N Possible in 1 hour</th>
<th>Max. N Possible in 1 month</th>
<th>Max. N Possible in 1 century</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lg N$</td>
<td>10^{40000}</td>
<td>$10^{1000000000}$</td>
<td>$10^{8 \cdot 10^{11}}$</td>
<td>$10^{9 \cdot 10^{24}}$</td>
</tr>
<tr>
<td>N</td>
<td>10^6</td>
<td>$3.6 \cdot 10^9$</td>
<td>$2.7 \cdot 10^{12}$</td>
<td>$3.2 \cdot 10^{15}$</td>
</tr>
<tr>
<td>$N \lg N$</td>
<td>63000</td>
<td>$1.3 \cdot 10^8$</td>
<td>$7.4 \cdot 10^{10}$</td>
<td>$6.9 \cdot 10^{13}$</td>
</tr>
<tr>
<td>N^2</td>
<td>1000</td>
<td>60000</td>
<td>$1.6 \cdot 10^6$</td>
<td>$5.6 \cdot 10^7$</td>
</tr>
<tr>
<td>N^3</td>
<td>100</td>
<td>15000</td>
<td>140000</td>
<td>150000</td>
</tr>
<tr>
<td>2^N</td>
<td>20</td>
<td>32</td>
<td>41</td>
<td>51</td>
</tr>
</tbody>
</table>

Careful!

• It's also true that the worst-case time is $O(N^2)$, since $N \in O(N^2)$ also: Big-Oh bounds are loose.
• The worst-case time is $\Omega(N)$, since $N \in \Omega(N)$, but that does not mean that the loop always takes time N, or even $K \cdot N$ for some K.
• Instead, we are just saying something about the function that maps N into the largest possible time required to process an array of length N.
• To say as much as possible about our worst-case time, we should try to give a Θ bound: in this case, we can: $\Theta(N)$.
• But again, that still tells us nothing about best-case time, which happens when we find X at the beginning of the loop. Best-case time is $O(1)$.
Effect of Nested Loops

- Nested loops often lead to polynomial bounds:
  ```java
  for (int i = 0; i < A.length; i += 1)
    for (int j = 0; j < A.length; j += 1)
      if (i != j && A[i] == A[j])
        return true;
  return false;
  ```

- Clearly, time is \(O(N^2)\), where \(N = A.length\). Worst-case time is \(\Theta(N^2)\).

- Loop is inefficient though:
  ```java
  for (int i = 0; i < A.length; i += 1)
    for (int j = i+1; j < A.length; j += 1)
      if (A[i] == A[j])
        return true;
  return false;
  ```

- In the worst case, both recursive calls happen.

Recursion and Recurrences: Fast Growth

- Silly example of recursion:
  ```java
  /** True iff X is a substring of S */
  boolean occurs (String S, String X) {
    if (S.equals(X)) return true;
    if (S.length () <= X.length ()) return false;
    return
      occurs (S.substring (1), X) ||
      occurs (S.substring (0, S.length ()-1), X);
  }
  ```

- Consider a fixed size for \(X\), say \(N_0\).

- Define \(C(N)\) to be the worst-case cost of \(\text{occurs}(S,X)\) for \(S\) of length \(N\), measured in # of calls to \(\text{occurs}\). Then
  ```
  C(N) = \begin{cases} 
    1, & \text{if } N \leq N_0, \\
    2C(N - 1) & \text{if } N > N_0
  \end{cases}
  ```

- So \(C(N)\) grows exponentially:
  ```
  C(N) = 2C(N-1) = 2 \cdot 2C(N-2) = \ldots = 2 \cdot 2 \cdot \ldots \cdot 1 = 2^{N-N_0} \in \Theta(2^N)
  ```

Binary Search: Slow Growth

```java
/** True X iff is an element of S[L .. U]. Assumes */
* S in ascending order, 0 <= L <= U-1 < S.length. */
boolean isIn (String X, String[] S, int L, int U) {
  int M = (L+U)/2;
  int direct = X.compareTo (S[M]);
  if (direct < 0) return isIn (X, S, L, M-1);
  else if (direct > 0) return isIn (X, S, M+1, U);
  else return true;
}
```

- Here, worst-case time, \(C(D)\), (as measured by # of string comparisons), depends on size \(D = U - L + 1\).

- We eliminate \(S[M]\) from consideration each time and look at half the rest. Assume \(D = 2^k - 1\) for simplicity, so:
  ```
  C(D) = \begin{cases} 
    1, & \text{if } D \leq 0, \\
    1 + C((D - 1)/2), & \text{if } D > 0.
  \end{cases}
  ```

- In general, \(\Theta(N \lg N)\) for arbitrary \(N\) (not just \(2^k\)).

Another Typical Pattern: Merge Sort

```java
List sort (List L) {
  if (L.length () < 2) return L;
  int direct = X.compareTo (S[M]);
  if (direct < 0) return sort (L, M-1);
  else if (direct > 0) return sort (L, M+1);
  else return L;
}
```

- Assume that size of \(L\) is \(N = 2^k\), worst-case cost function, \(C(N)\), counting just merge time (\(\infty\) # items merged):
  ```
  C(N) = \begin{cases} 
    1, & \text{if } N \leq 2; \\
    2C(N/2) + N, & \text{if } N \geq 2.
  \end{cases}
  ```

- In general, \(\Theta(N \lg N)\) for arbitrary \(N\) (not just \(2^k\)).
Amortization: Expanding Vectors

- When using array for expanding sequence, best to double size of array to grow it. Here's why.
- If array is size s, doubling its size and moving s elements to the new array takes time $\propto 2s$.
- Cost of inserting N items into array, doubling size as needed, starting with array size 1:

<table>
<thead>
<tr>
<th>To Insert</th>
<th>Resizing</th>
<th>Cumulative</th>
<th>Resizing Cost</th>
<th>Array Size</th>
<th>After Insertions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item #</td>
<td>Cost</td>
<td>Cost</td>
<td>per Item</td>
<td>Array Size</td>
<td>After Insertions</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3 to 4</td>
<td>4</td>
<td>6</td>
<td>1.5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5 to 8</td>
<td>8</td>
<td>14</td>
<td>1.75</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>$2^m + 1$ to 2^{m+1}</td>
<td>2^{m+1}</td>
<td>$2^{m+2} - 2$</td>
<td>≈ 2</td>
<td>2^{m+1}</td>
<td>2^{m+1}</td>
</tr>
</tbody>
</table>

- If we spread out (amortize) the cost of resizing, we average about 2 time units on each item: “amortized insertion time is 2 units.”
- So even though worst-case time for adding one element to array of N elements is $2N$, time to add N elements is $\Theta(N)$, not $\Theta(N^2)$.