Today:

- Integer Types

Readings for Upcoming Topics: *Data Structures (Into Java)*, Chapter 1.

Integer Types and Literals

<table>
<thead>
<tr>
<th>Type</th>
<th>Bits</th>
<th>Signed?</th>
<th>Literals</th>
</tr>
</thead>
<tbody>
<tr>
<td>byte</td>
<td>8</td>
<td>Yes</td>
<td>'a' // (char) 97</td>
</tr>
</tbody>
</table>
| | | | '
' // newline ((char) 10) |
| | | | '	' // tab ((char) 8) |
| | | | '\\' // backslash |
| | | | 'A', '\101', '\u0041' // == (char) 65 |
| short | 16 | Yes | 123 |
| | | | 0100 // Octal for 64 |
| | | | 0x3f, 0xffffffff // Hexadecimal 63, -1 (!) |
| int | 32 | Yes | 123, 01000L, 0x3fL |
| | | | 1234567891011L |
| long | 64 | Yes | |

* "N bits" means that there are 2^N integers in the domain of the type.
* If signed, range of values is $-2^{N-1} .. 2^{N-1} - 1$.
* If unsigned, only non-negative numbers, and range is $0 .. 2^N - 1$.
* Negative numerals are just negated (positive) literals.
* Use casting for *byte* and *short*: (byte) 12, (short) 2000.

Modular Arithmetic

- **Problem**: How do we handle overflow, such as occurs in $10000 \times 10000 \times 10000$?

- Some languages throw an exception (Ada), some give undefined results (C, C++)

- Java defines the result of any arithmetic operation or conversion on integer types to "wrap around"—modular arithmetic.

- That is, the "next number" after the largest in an integer type is the smallest (like "clock arithmetic").

- **E.g.**, (byte) 128 == (byte) (127+1) == (byte) -128

- **In general,**
 - If the result of some arithmetic subexpression is supposed to have type T, an n-bit integer type,
 - then we compute the real (mathematical) value, x,
 - and yield a number, x', that is in the range of T, and that is equivalent to x modulo 2^n.
 - (That means that $x - x'$ is a multiple of 2^n.)

Modular Arithmetic II

- (byte) (64*8) yields 0, since $512 - 0 = 2 \cdot 2^8$.
- (byte) (64*2) and (byte) (127+1) yield -128, since $128 - (-128) = 1 \cdot 2^8$.
- (byte) (345*6) yields 22, since $2070 - 22 = 8 \cdot 2^8$.
- (byte) (-30*13) yields 122, since $-390 - 122 = -2 \cdot 2^8$.
- (char) (-1) yields $2^{16} - 1$, since $-1 - (2^{16} - 1) = 2^{16}$.

- **Natural definition for a machine that uses binary arithmetic:**

<table>
<thead>
<tr>
<th>Type</th>
<th>char</th>
<th>Type</th>
<th>byte</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 = 0000000000000000</td>
<td></td>
<td>0 = 0000000000000000</td>
</tr>
<tr>
<td></td>
<td>1 = 0000000000000001</td>
<td></td>
<td>1 = 0000000000000001</td>
</tr>
<tr>
<td></td>
<td>$2^{16} - 1 = 1111111111111111$</td>
<td></td>
<td>$2^{16} - 1 = 1111111111111111$</td>
</tr>
<tr>
<td></td>
<td>127 = 0111111111111111</td>
<td></td>
<td>127 = 0111111111111111</td>
</tr>
<tr>
<td></td>
<td>-128 = 1000000000000000</td>
<td></td>
<td>-128 = 1000000000000000</td>
</tr>
<tr>
<td></td>
<td>-1 = 1111111111111111</td>
<td></td>
<td>-1 = 1111111111111111</td>
</tr>
</tbody>
</table>

- **Terminology**: rightmost (units) bit is bit 0, 2s bit is bit 1.

- **Hence**, changing bit n modifies value by 2^n; truncating on left to n bits computes modulo 2^n.
Negative numbers

- Why this representation for \(-1\)?

\[
\begin{array}{c|c}
1 & 00000001_2 \\
+ -1 & 11111111_2 \\
= & 0100000000000000_2 \\
\end{array}
\]

Only 8 bits in a byte, so bit 8 falls off, leaving 0.

- The truncated bit is in the \(2^8\) place, so throwing it away gives an equal number modulo \(2^8\). All bits to the left of it are also divisible by \(2^8\).

- On unsigned types (char), arithmetic is the same, but we choose to represent only non-negative numbers modulo \(2^{16}\):

\[
\begin{array}{c|c}
1 & 0000000000000001_2 \\
+ 2^{16} - 1 & 1111111111111111_2 \\
= 2^{16} + 0 & 0000000000000000_2 \\
\end{array}
\]

Conversion

- In general Java will silently convert from one type to another if this makes sense and no information is lost from value.

- Otherwise, cast explicitly, as in (byte) x.

- Hence, given:

```
byte aByte; char aChar; short aShort; int anInt; long aLong;
```

```
// OK:
aShort = aByte; anInt = aByte; anInt = aShort; anInt = aChar; aLong = anInt;
```

// Not OK, might lose information:

```
anInt = aLong; aByte = anInt; aChar = anInt; aShort = anInt; aShort = aChar; aChar = aShort; aChar = aByte;
```

// OK by special dispensation:

```
aByte = 13; // 13 is compile-time constant
aByte = 12+100 // 112 is compile-time constant
```

Promotion

- Arithmetic operations (+, *, ...,) promote operands as needed.

- Promotion is just implicit conversion.

- For integer operations,
 - if any operand is long, promote both to long.
 - otherwise promote both to int.

- So,

```
aByte + 3 == (int) aByte + 3 // Type int
aLong + 3 == aLong + (long) 3 // Type long
'A' + 2 == (int) 'A' + 2 // Type int
aByte = aByte + 1 // ILLEGAL (why?)
```

- But fortunately,

```
aByte += 1; // Defined as aByte = (byte) (aByte+1)
```

- Common example:

```
// Assume aChar is an upper-case letter
char lowerCaseChar = (char) ('a' + aChar - 'A'); // why cast?
```

Bit twiddling

- Java (and C, C++) allow for handling integer types as sequences of bits. No "conversion to bits" needed: they already are.

- Operations and their uses:

<table>
<thead>
<tr>
<th>Mask</th>
<th>Set</th>
<th>Flip</th>
<th>Flip all</th>
</tr>
</thead>
<tbody>
<tr>
<td>00101100</td>
<td>00101100</td>
<td>00101100</td>
<td></td>
</tr>
<tr>
<td>& 10100111</td>
<td>10100111</td>
<td>~ 10100111</td>
<td>~ 10100111</td>
</tr>
<tr>
<td>00100100</td>
<td>10101111</td>
<td>10001011</td>
<td>01011000</td>
</tr>
</tbody>
</table>

- Shifting:

<table>
<thead>
<tr>
<th>Left</th>
<th>Arithmetic Right</th>
<th>Logical Right</th>
</tr>
</thead>
<tbody>
<tr>
<td>10101101 << 3</td>
<td>10101101 >> 3</td>
<td>10101100 >> 3</td>
</tr>
<tr>
<td>01101000</td>
<td>11110101</td>
<td>00010101</td>
</tr>
</tbody>
</table>

```
(-1) >>> 29?
```

- What is:

```
x << n?
x >> n?
(x >>> 3) & ((1<5)-1)?
```