EE40-FA09 HW Solutions

In this solution set the prime symbol indicates derivative: \(v' = \frac{dv}{dt} \)

Problem 1:
\(V(t) = V_0 \left(\exp(-t/RC) \right) \)
\(-\) \(V(\infty)/V_0 = 1/e = 37\% \)
\(W(t) = \frac{1}{2} C V^2(t) \)
\(-\) \(W(t)/W_0 = V^2(t)/V_0^2 \)
\(-\) \(W(\infty)/W_0 = 1/e^2 = 14\% \)

Problem 2:
\(a) \) Since the capacitor voltages cannot change instantaneously, at \(t=0^+ \):
\(-\) \(I = 100V/100k\Omega = 1mA \)
\(b) \) \(-\) \(V_1 + Ri + V_2 = 0 \)
\(-\) \(-V_1' + Ri' + V_2' = 0 \)
\(-\) \(V_1' = -i/C_1; V_2' = i/C_2 \)
\(-\) \(i(1/C_1 + 1/C_2) + Ri' = 0 \)
\(c) \) from \(b) \) \(RC_1C_2/(C_1+C_2) = 50ms \)
\(d) \) The solution is of the form \(K_1 \exp(-t/\tau) \). We find \(K_1 \) and \(\tau \) from parts \(a) \) and \(c) \) respectively.
\(-\) \(i(t) = 1mA \exp(-t/50ms) \)
\(e) \) \(C_1 V_1 = (C_2+C_1) V_t \)
\(-\) \(\rightarrow V_t = 50V \)

Problem 3:
\(a) \) We find the initial conditions and plug in to the known solution form:
\(-\) \[\frac{V_{out}(t) - 10}{15k} + \frac{1}{\mu} \frac{dV_{out}(t)}{dt} = 0 \]
\(-\) \(V_{out}(0) = 10V \)
\(-\) \(V_{out}(t) = 10(1 - e^{-t/RC}) = 10(1 - e^{-t/0.0155}) \)
\(b) \) We again use the same strategy to find the time dependent form of \(V_{out} \) for \(t > 30ms \):
\(-\) \(V_{out}(0.03) = 10(1 - e^{-0.03/RC}) = 8.65V \)
\(-\) \(10 = V_x(t) + 2V_x(t) \)
\(-\) \(V_x(t) = \frac{10}{3} V \)
\(-\) \[V_{out}(t) = 2V_x + (8.65V - 2V_x)e^{-0.03/RC} = \frac{20}{3} + 1.98e^{-0.03/0.01} \]
\(c) \) The peak value is 8.65 V, and the asymptotic value is 6.66 V.
Problem 4:
Capacitor=Open Circuit; Inductor=short.
Hence
\[V_C = -15 \text{V}; \]
\[I_L = 5 \text{mA}; \]
\[V_x = 5 \text{mA} \times 2 \text{k}\Omega = 10 \text{V} \]

Problem 5:
In steady state, the inductor acts as a short circuit. With the switch open, the steady-state current is:
\[100 \text{ V} / 100 \text{ \Omega} = 1 \text{ A} \]
With the switch closed, the current eventually approaches:
\[i(\infty) = 100 \text{ V} / 25 \text{ \Omega} = 4 \text{ A} \]
For \(t > 0 \), the current has the form
\[i(t) = K_1 + K_2 \exp(-R t / L) \]
where \(R = 25 \Omega \), because that is the resistance with the switch closed. Now, we have
\[i(0^+) = i(0^-) = 1 \text{ A} = K_1 + K_2 \]
\[i(\infty) = 4 \text{ A} = K_1 \]
Thus, we have \(K_2 = -3 \text{ A} \).
The current is
\[i(t)=1A+3A(1-\exp(-t/80\text{ms})) \]
Problem 6:

The differential equation is:

\[V_s = R i + L i' \]

\[10V \sin(300t) = 300 \, \Omega \, i + i'. \]

Substituting the particular solution

\[A \cos(300t) + B \sin(300t), \]

we obtain

\[300(B-A) \sin(300t) = 10 \sin(300t) \]

\[300(B+A) \cos(300t) = 0 \]

Hence, \(B = -A = 1/60 \)

The particular solution is therefore:

\[i_p(t) = -1/60(\cos(300t) + \sin(300t)) \]

and is such that \(i(0) = 1/60 \, A. \)

As a result, the homogeneous solution will need

\[i_h(t) = -1/60 \exp(-300t) \]

so that \(i_h(0) + i_p(0) = 0. \)

The complete solution is then:

\[i(t) = -1/60 \exp(-300t) - 1/60(\cos(300t) + \sin(300t)) \]

Problem 7:

The differential equation reads

\[v(t) = R i + L i' \]

\[v(t) = 10i = 10i + 2i' \]

Substituting the particular solution of the form \(A + Bt \) gives
10t=10A+10Bt+2B
Solving this equation separately using the time-dependent and constant terms,
10A+2B=0, B=1
Hence A=-B/5=-0.2 and \(i_p(0)=-0.2\).
The complementary solution is
\(i_c(t) = K_1 \exp(-R \ t / L)\)
Finally we apply the initial condition:
\(i(0) = 0 = K_1 - 0.2\)
so that \(i_n(t)=0.2\exp(-5t)\) and the complete solution is:
\(i(t) = 0.2 \ A \ (\exp(-5 \ t) - 1) + 1A/s \ * \ t\)

Problem 8:
The differential equation can be obtaining by writing KVL and then differentiating LHS and RHS:
\[d(10\cos(100t))/dt = L \ i'' + R \ i' + i/C = -1000\sin(100t)\]
Substituting the particular solution:
\(i(t)=A\cos(100t)+B\sin(100t)\)
\(i'=100(-A\sin(100t) + B\cos(100t))\)
\(i''=-10^4(A\cos(100t) + B\sin(100t))\)
one obtains
\(-10^4L(A\cos(100t) + B\sin(100t)) + 100R(-A\sin(100t) + B\cos(100t)) + 1/C(A\cos(100t) + B\sin(100t)) = -1000\sin(100t)\)
Sdimplifying out the first and the third term, and dividing LHS and RHS by 1000
\[5(-A\sin(100t)+B\cos(100t))=-\sin(100t)\]
This results in B=0, A=1/5, for:
\(i_p(t) = 0.2 \ A \ \cos(100 \ t)\)
At t=0, this solution becomes \(i(0)=1/5\); furthermore \(i'(0)=0\).
The homogeneous solution must be found by solving the roots of the characteristic polynomial:
\[x^2+50x+10^4=0\]
which gives
\[x_1=-50+(50^2-4*10^4)/2=-50+j*(37500)^{0.5}\]
\[x_2=-50+(50^2-4*10^4)/2=-50-j*(37500)^{0.5}\]
Now note that we have
\[\alpha = \frac{R}{2L} = 25 \text{ rad/s}; \quad \omega_0 = \frac{1}{\sqrt{LC}} = 100 \text{ rad/s} \]

Because we have \(\alpha < \omega_0 \), this circuit is underdamped. The natural frequency is given by Equation 4.76:

\[\omega_n = \sqrt{\omega_0^2 - \alpha^2} = 96.82 \text{ rad/s} \]

Substituting in the initial conditions we find

\[i_h(t) = \exp(-t^{*}25)(-0.2\cos(96.82t)-5.16\sin(96.82t)) \]

and the complete solution is:

\[i(t) = 0.2 \text{ A} (\cos(100t) - \exp(25t)\cos(96.8t)) + 0.051 \text{ A} \exp(-25t)\sin(96.8t) \]

Problem 9:

a) (3 pts) Because the current through the inductor is continuous, \(i(0^+) = 0 \)

b) (3 pts) Use the voltage divider formula to find the initial voltage across the capacitor:

\[\frac{80*15}{(9+15)} = 50 \text{ V} \]

c) (3 pts) Since the current in the inductor does not change, and the voltage on the capacitor does not change, there is 0 V drop across the resistor, and 50V of drop on the inductor. As a result,

\[V = 100V - 50V = 50V = L \frac{di(0^+)}{dt} \]

\[\frac{di(0^+)}{dt} = \frac{50V}{5m} = 10000 \text{ A/s} \]

d) (6 pts) The particular solution gives \(i(t) = 0 \). To find the homogeneous solution:

\[\omega_0^2 = \frac{1}{LC} = 1e8 \]

\[\alpha^2 = \left(\frac{R}{2L}\right)^2 = .64e8 \]

\[\omega^2 > \alpha^2 \Rightarrow \text{Underdamped response (2pt)} \]

Thus we know the solution for \(i(t) \) is in the form

\[i(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} \sin \omega_d t \]

Using initial conditions from part a and b, we find the solution in the general form to be:

\[i(t) = (1.67e^{-30000t} \sin 6000t) A \text{ for } t \geq 0. \]