EECS 252 Graduate Computer

 Architecture
Lec 18 - Storage

David Patterson
Electrical Engineering and Computer Sciences
University of California, Berkeley
http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06

Review

- Disks: Arial Density now 30\%/yr vs. 100\%/yr in 2000s
- TPC: price performance as normalizing configuration feature
- Auditing to ensure no foul play
- Throughput with restricted response time is normal measure
- Fault \Rightarrow Latent errors in system \Rightarrow Failure in service
- Components often fail slowly
- Real systems: problems in maintenance, operation as well as hardware, software

Deriving Little's Law

- Time $_{\text {observe }}=$ elapsed time that observe a system
- Number $_{\text {task }}=$ number of (overlapping) tasks during Time ${ }_{\text {observe }}$
- Time $_{\text {accumulated }}=$ sum of elapsed times for each task

Then

- Mean number tasks in system $=$ Time $_{\text {accumulated }} /$ Time $_{\text {observe }}$
- Mean response time $=$ Time $_{\text {accumulated }} /$ Number $_{\text {task }}$
- Arrival Rate $=$ Number $_{\text {task }} /$ Time $_{\text {observe }}$

Factoring RHS of $1^{\text {st }}$ equation

- Time $_{\text {accumulated }} /$ Time $_{\text {observe }}=$ Tine $_{\text {accumulated }} /$ Number $_{\text {task }} \mathrm{x}$ Number $_{\text {task }} /$ Time $_{\text {observe }}$
Then get Little's Law:
- Mean number tasks in system = Arrival Rate x Mean response time

A Little Queuing Theory: Notation

- Notation

Time ${ }_{\text {server }}$ average time to service a task
Average service rate $=1$ / Time server (traditionally μ)
Time queue average time/task in queue
Time ${ }_{\text {system }}$ average time/task in system
$=$ Time $_{\text {queu }}+$ Time $^{\text {sin }}$
Arrival rate avg no. of arriving tasks/sec (traditionally λ)

- Length ${ }_{\text {server }}$ average number of tasks in service

Length queue average length of queue
Length ${ }_{\text {system }}$ average number of tasks in service
$=$ Length $_{\text {queиe }}+$ Length $_{\text {server }}$
Little's Law: Length ${ }_{\text {seryer }}=$ Arrival rate \times Time $_{\text {server }}$ (Mean number tasks = arrival rate x mean service time)

4/16/2006
CS252 s06 Storage

Server Utilization

- For a single server, service rate $=1$ / Time $_{\text {server }}$
- Server utilization must be between 0 and 1 , since system is in equilibrium (arrivals = departures); often called traffic intensity, traditionally ρ)
- Server utilization = mean number tasks in service
= Arrival rate \times Time $_{\text {server }}$
- What is disk utilization if get 50 I/O requests per second for disk and average disk service time is $10 \mathrm{~ms}(0.01 \mathrm{sec})$?
- Server utilization $=50 / \mathrm{sec} \times 0.01 \mathrm{sec}=0.5$
- Or server is busy on average 50% of time

Time in Queue vs. Length of Queue

- We assume First In First Out (FIFO) queue
- Relationship of time in queue (Time $_{\text {queue }}$) to mean number of tasks in queue (Length ${ }_{\text {queue }}$) ?
- Time $_{\text {queue }}=$ Length $_{\text {queue }} \times$ Time $_{\text {server }}$
+ "Mean time to complete service of task when new task arrives if server is busy"
- New task can arrive at any instant; how predict last part?
- To predict performance, need to know sometime about distribution of events

Distribution of Random Variables

- A variable is random if it takes one of a specified set of values with a specified probability
- Cannot know exactly next value, but may know probability of all possible values
- I/O Requests can be modeled by a random variable because OS normally switching between several processes generating independent I/O requests - Also given probabilistic nature of disks in seek and rotational delays
- Can characterize distribution of values of a random variable with discrete values using a histogram
- Divides range between the min \& max values into buckets
- Histograms then plot the number in each bucket as columns
- Works for discrete values e.g., number of I/O requests?
- What about if not discrete? Very fine buckets

Characterizing distribution of a random variable

- Need mean time and a measure of variance
- For mean, use weighted arithmetic mean (WAM):
- $f_{i}=$ frequency of task i
- Ti = time for tasks I
weighted arithmetic mean $=f 1 \times T 1+f 2 \times T 2+\ldots+f n \times T n$
- For variance, instead of standard deviation, use Variance (square of standard deviation) for WAM:
- Variance $=\left(f 1 \times T 1^{2}+f 2 \times T 2^{2}+\ldots+f n \times T n^{2}\right)-W^{2}$
- If time is miliseconds, Variance units are square milliseconds!
- Got a unitless measure of variance?

Squared Coefficient of Variance (\mathbf{C}^{2})

- $\mathbf{C}^{2}=$ Variance / WAM ${ }^{2}$
$\Rightarrow C=\operatorname{sqrt}($ Variance)/WAM $=$ StDev/WAM
- Unitless measure
- Trying to characterize random events, but need distribution of random events with tractable math
- Most popular such distribution is exponential distribution, where C = 1
- Note using constant to characterize variability about the mean
- Invariance of C over time \Rightarrow history of events has no impact on probability of an event occurring now
- Called memoryless, an important assumption to predict behavior
- (Suppose not; then have to worry about the exact arrival times of requests relative to each other \Rightarrow make math not tractable!)

Time in Queue

- Time new task must wait for server to complete a task assuming server busy
- Assuming it's a Poisson process
- Average residual service time $=1 / 2 \times$ Arithmetic mean $\times\left(1+C^{2}\right)$
- When distribution is not random \& all values $=$ average \Rightarrow standard deviation is $0 \Rightarrow C$ is 0 \Rightarrow average residual service time
$=$ half average service time
- When distribution is random \& Poisson $\Rightarrow C$ is 1
\Rightarrow average residual service time
= weighted arithmetic mean

Time in Queue

- All tasks in queue (Length ${ }_{\text {queue }}$) ahead of new task must be completed before task can be serviced
- Each task takes on average Time server
- Task at server takes average residual service time to complete
- Chance server is busy is server utilization \Rightarrow expected time for service is Server utilization \times Average residual service time
- Time $_{\text {queue }}=$ Length $_{\text {queue }}+$ Time $_{\text {server }}$
+ Server utilization x Average residual service time
- Substituting definitions for Length ${ }_{\text {queue }}$, Average residual service time, \& rearranging:
Time $_{\text {queue }}=$ Time $_{\text {server }}$
x Server utilization/(1-Server utilization)
4/16/2006
CS252 s06 Storage

Time in Queue vs. Length of Queue

- Length $_{\text {queue }}=$ Arrival rate \times Time $_{\text {queue }}$
- Little's Law applied to the components of the black box since they must also be in equilibrium
- Given

1. Time $_{\text {queue }}=$ Time $_{\text {ser }}$
2. Arrival rate \times Time $_{\text {server }}=$ Server utilization
\Rightarrow Length $_{\text {queue }}=$ Server utilization 2
/(1-Server utilization)

- Mean no. requests in queue slide 6? (50\%)
- Length ${ }_{\text {queue }}=(0.5)^{2} /(1-0.5)=0.25 / 0.5=0.5$
$\Rightarrow 0.5$ requests on average in queue

CS252: Administrivia

- Fun talking during Pizza last Wednesday
- Project Update Meeting Wednesday 4/19, 10 to 12:30
- 635 Soda. Meeting signup online?
- Monday 4/24 Quiz 2 5-8 PM in room ?
- (Mainly Ch 4 to 6)
- Wed 4/26 Bad Career Advice / Bad Talk Advice ? / Goodbye to Computer Architecture / Your Cal Cultural History
- Project Presentations Monday $5 / 1$ (all day)
- Project Posters 5/3 Wednesday (11-1 in Soda)
- Final Papers due Friday 5/5
- Email Archana, who will post papers on class web site

Example

- 40 disk $\mathrm{I} / \mathrm{Os} / \mathrm{sec}$, requests are exponentially distributed, and average service time is 20 ms
\Rightarrow Arrival rate $/ \mathrm{sec}=40$, Time $_{\text {server }}=0.02 \mathrm{sec}$

1. On average, how utilized is the disk?

- Server utilization $=$ Arrival rate \times Time

$$
=40 \times 0.02=0.8=80 \%
$$

2. What is the average time spent in the queue?

- Time $_{\text {queue }}=$ Time $_{\text {server }}$
x Server utilization/(1-Server utilization)

$$
=20 \mathrm{~ms} \times 0.8 /(1-0.8)=20 \times 4=80 \mathrm{~ms}
$$

3. What is the average response time for a disk request, including the queuing time and disk service time?

- Time $_{\text {system }}=$ Time $_{\text {queue }}+$ Time $_{\text {server }}=\mathbf{8 0 + 2 0} \mathbf{~ m s}=\mathbf{1 0 0} \mathbf{~ m s}$

How much better with 2X faster disk?

- Average service time is 10 ms
\Rightarrow Arrival rate $/ \mathbf{s e c}=40$, Time $_{\text {server }}=0.01 \mathrm{sec}$

1. On average, how utilized is the disk?

- Server utilization $=$ Arrival rate \times Time $_{\text {server }}$

$$
=40 \times 0.01=0.4=40 \%
$$

2. What is the average time spent in the queue?

- Time $_{\text {queue }}=$ Time $_{\text {server }}$
x Server utverilization/(1-Server utilization)

$$
=10 \mathrm{~ms} \times 0.4 /(1-0.4)=10 \times 2 / 3=6.7 \mathrm{~ms}
$$

3. What is the average response time for a disk request, including the queuing time and disk service time?

- Time $_{\text {system }}=$ Time $_{\text {queue }}+$ Time $_{\text {server }}=6.7+10 \mathrm{~ms}=16.7 \mathrm{~ms}$
- 6X faster response time with 2 X faster disk!

Cross cutting Issues:
Buses \Rightarrow point-to-point links and switches

- Learn quickly do not try to utilize resource 100\% but how far should back off?
- Allows designers to decide impact of faster hardware on utilization and hence on response time
- Works surprisingly well

Standard	width	length	Clock rate	MB/s	Max
(ParalleI) ATA	8 b	0.5 m	133 MHz	133	2
Serial ATA	2 b	2 m	3 GHz	300	$?$
(Parallel) SCSI	16 b	12 m	$80 \mathrm{MHz}($ DDR $)$	320	15
Serial Attach SCSI	1 b	10 m	--	375	16,256
PCI	$32 / 64$	0.5 m	$33 / 66 \mathrm{MHz}$	533	$?$
PCI Express	2b	0.5 m	3 GHz	250	$?$

- No. bits and BW is per direction $\Rightarrow 2 X$ for both directions (not shown).
- Since use fewer wires, commonly increase BW via versions with $2 \mathrm{X}-12 \mathrm{X}$ the number of wires and BW

Storage Example: Internet Archive

- Goal of making a historical record of the Internet
- Internet Archive began in 1996
- Wayback Machine interface perform time travel to see what the website at a URL looked like in the past
- It contains over a petabyte (10^{15} bytes), and is growing by 20 terabytes (10^{12} bytes) of new data per month
- In addition to storing the historical record, the same hardware is used to crawl the Web every few months to get snapshots of the Interne.

Internet Archive Cluster

- 1U storage node PetaBox GB2000 from Capricorn Technologies
- Contains 4500 GB Parallel ATA (PATA) disk drives, 512 MB of DDR266 DRAM, one 10/100/1000 Ethernet interface, and a 1 GHz C3 Processor from VIA (80×86).
- Node dissipates ≈ 80 watts
- 40 GB2000s in a standard VME rack, $\Rightarrow 80 \mathrm{~TB}$ of raw storage capacity
- 40 nodes are connected with a 48 -port 10/100 or 10/100/1000 Ethernet switch
- Rack dissipates about 3 KW
- 1 PetaByte = 12 racks

4/16/2006 CS252 s06 Storage

22

Estimated Cost

- Via processor, 512 MB of DDR266 DRAM, ATA disk controller, power supply, fans, and enclosure $=\$ 500$
- 7200 RPM Parallel ATA drives holds 500 GB = \$375.
- 48-port 10/100/1000 Ethernet switch and all cables for a rack $=\$ 3000$.
- Cost \$84,500 for a 80-TB rack.
- 160 Disks are $\approx 60 \%$ of the cost

Estimated Performance

- 7200 RPM Parallel ATA drives holds 500 GB, has an average time seek of 8.5 ms , transfers at 50 ' MB/second from the disk. The PATA link speed is 133 MB/second.
- performance of the VIA processor is 1000 MIPS.
- operating system uses $\mathbf{5 0 , 0 0 0}$ CPU instructions for a disk I/O.
- network protocol stacks uses 100,000 CPU instructions to transmit a network protocol stacks uses 100,000 cpu instruction
data block between the cluster and the external world
- ATA controller overhead is $0.1 \mathbf{~ m s}$ to perform a disk I/O.
- Average I/O size is 16 KB for accesses to the historical record via the Wayback interface, and 50 KB when collecting a new snapshot
- Disks are limit: $\approx 75 \mathrm{I} / \mathrm{Os} / \mathrm{s}$ per disk, $300 / \mathrm{s}$ per node, $12000 / \mathrm{s}$ per rack, or about 200 to 600 Mbytes / sec Bandwidth per rack
- Switch needs to support 1.6 to 3.8 Gbits/second over 40 Gbit/sec links

Estimated Reliability

- CPU/memory/enclosure MTTF is $\mathbf{1 , 0 0 0}, 000$ hours (x 40)
- PATA Disk MTTF is $\mathbf{1 2 5 , 0 0 0}$ hours ($\mathbf{x} \mathbf{1 6 0)}$
- PATA controller MTTF is 500,000 hours ($x 40$)
- Ethernet Switch MTTF is 500,000 hours (x 1)
- Power supply MTTF is $\mathbf{2 0 0 , 0 0 0}$ hours ($x 40$)
- Fan MTTF is $\mathbf{2 0 0 , 0 0 0}$ hours ($\mathbf{x} 40$)
- PATA cable MTTF is $\mathbf{1 , 0 0 0 , 0 0 0}$ hours ($\mathbf{x} 40$)
- MTTF for the system is 531 hours (≈ 3 weeks)
- 70\% of time failures are disks
- 20% of time failures are fans or power supplies

RAID Paper Discussion

- How propose balance performance and capacity of RAID 1 to RAID 5 ? What do you think of it?
- What were some of the open issues? Which were significant?
- In retrospect, what do you think were important contributions?
- What did the authors get wrong?
- In retrospect:
- RAID in Hardware vs. RAID in Software
- Rated MTTF vs. in the field
- Synchronization of disks in an array
- EMC (\$10B sales in 2005) and RAID
- Who invented RAID?

RAID Paper Discussion

- What was main motivation for RAID in paper?
- Did prediction of processor performance and disk capacity hold?
- What were the performance figures of merit to compare RAID levels?
- What RAID groups sizes were in the paper? Are they realistic? Why?
- Why would RAID 2 (ECC) have lower predicted MTTF than RAID 3 (Parity)?

Summary

- Little's Law: Length ${ }_{\text {system }}=$ rate x Time $_{\text {s }}$ (Mean number customers = arrival rate x mean service time)
- Appreciation for relationship of latency and utilization:
- Time $_{\text {system }}=$ Time $_{\text {server }}+$ Time $_{\text {queue }}$
- Time $_{\text {queue }}=$ Time $_{\text {server }}$
x Server utilization/(1-Server utilization)
- Clusters for storage as well as computation
- RAID paper: Its reliability, not performance, that matters for storage

[^0]
[^0]: 4/16/2006
 CS252 s06 Storage

