
EECS 252 Graduate Computer
Architecture

Lec 18 – Storage
David Patterson

Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06

4/16/2006 CS252 s06 Storage 2

Review
• Disks: Arial Density now 30%/yr vs. 100%/yr in 2000s
• TPC: price performance as normalizing configuration

feature
– Auditing to ensure no foul play
– Throughput with restricted response time is normal measure

• Fault ⇒ Latent errors in system ⇒ Failure in service
• Components often fail slowly
• Real systems: problems in maintenance, operation as well

as hardware, software

4/16/2006 CS252 s06 Storage 3

Introduction to Queueing Theory

• More interested in long term, steady state than in
startup => Arrivals = Departures

• Little’s Law:
Mean number tasks in system = arrival rate x
mean reponse time

– Observed by many, Little was first to prove

• Applies to any system in equilibrium, as long as
black box not creating or destroying tasks

Arrivals Departures

4/16/2006 CS252 s06 Storage 4

Deriving Little’s Law
• Timeobserve = elapsed time that observe a system
• Numbertask = number of (overlapping) tasks during Timeobserve
• Timeaccumulated = sum of elapsed times for each task
Then
• Mean number tasks in system = Timeaccumulated / Timeobserve
• Mean response time = Timeaccumulated / Numbertask
• Arrival Rate = Numbertask / Timeobserve
Factoring RHS of 1st equation
• Timeaccumulated / Timeobserve = Timeaccumulated / Numbertask x

Numbertask / Timeobserve
Then get Little’s Law:
• Mean number tasks in system = Arrival Rate x

Mean response time

4/16/2006 CS252 s06 Storage 5

A Little Queuing Theory: Notation

• Notation:
Timeserver average time to service a task
Average service rate = 1 / Timeserver (traditionally µ)
Timequeue average time/task in queue
Timesystem average time/task in system

= Timequeue + Timeserver
Arrival rate avg no. of arriving tasks/sec (traditionally λ)

• Lengthserver average number of tasks in service
Lengthqueue average length of queue
Lengthsystem average number of tasks in service

= Lengthqueue + Lengthserver
Little’s Law: Lengthserver = Arrival rate x Timeserver
(Mean number tasks = arrival rate x mean service time)

Proc IOC Device

Queue server
System

4/16/2006 CS252 s06 Storage 6

Server Utilization

• For a single server, service rate = 1 / Timeserver

• Server utilization must be between 0 and 1, since
system is in equilibrium (arrivals = departures);
often called traffic intensity, traditionally ρ)

• Server utilization
= mean number tasks in service
= Arrival rate x Timeserver

• What is disk utilization if get 50 I/O requests per
second for disk and average disk service time is
10 ms (0.01 sec)?

• Server utilization = 50/sec x 0.01 sec = 0.5
• Or server is busy on average 50% of time

4/16/2006 CS252 s06 Storage 7

Time in Queue vs. Length of Queue

• We assume First In First Out (FIFO) queue
• Relationship of time in queue (Timequeue) to mean

number of tasks in queue (Lengthqueue) ?
• Timequeue = Lengthqueue x Timeserver

+ “Mean time to complete service of
task when new task arrives if server is busy”

• New task can arrive at any instant; how predict
last part?

• To predict performance, need to know sometime
about distribution of events

4/16/2006 CS252 s06 Storage 8

Distribution of Random Variables
• A variable is random if it takes one of a specified

set of values with a specified probability
– Cannot know exactly next value, but may know probability of all

possible values

• I/O Requests can be modeled by a random variable
because OS normally switching between several
processes generating independent I/O requests

– Also given probabilistic nature of disks in seek and rotational delays

• Can characterize distribution of values of a random
variable with discrete values using a histogram

– Divides range between the min & max values into buckets
– Histograms then plot the number in each bucket as columns
– Works for discrete values e.g., number of I/O requests?

• What about if not discrete? Very fine buckets

4/16/2006 CS252 s06 Storage 9

Characterizing distribution of a random
variable
• Need mean time and a measure of variance
• For mean, use weighted arithmetic mean (WAM):
• fi = frequency of task i
• Ti = time for tasks I
weighted arithmetic mean

= f1×T1 + f2×T2 + . . . +fn×Tn
• For variance, instead of standard deviation, use

Variance (square of standard deviation) for WAM:
• Variance = (f1×T12 + f2×T22 + . . . +fn×Tn2) – WAM2

– If time is miliseconds, Variance units are square milliseconds!

• Got a unitless measure of variance?

4/16/2006 CS252 s06 Storage 10

Squared Coefficient of Variance (C2)

• C2 = Variance / WAM2

⇒ C = sqrt(Variance)/WAM = StDev/WAM
– Unitless measure

• Trying to characterize random events, but need
distribution of random events with tractable math

• Most popular such distribution is exponential
distribution, where C = 1

• Note using constant to characterize variability about
the mean

– Invariance of C over time ⇒ history of events has no impact on
probability of an event occurring now

– Called memoryless, an important assumption to predict behavior
– (Suppose not; then have to worry about the exact arrival times of

requests relative to each other ⇒ make math not tractable!)

4/16/2006 CS252 s06 Storage 11

Poisson Distribution

• Most widely used exponential distribution is
Poisson

• Described by probability mass function:
Probability (k) = e-a x ak / k!

– where a = Rate of events x Elapsed time

• If interarrival times exponentially distributed
& use arrival rate from above for rate of
events, number of arrivals in time interval t
is a Poisson process

4/16/2006 CS252 s06 Storage 12

Time in Queue

• Time new task must wait for server to
complete a task assuming server busy

– Assuming it’s a Poisson process

• Average residual service time
= ½ x Arithmetic mean x (1 + C2)

– When distribution is not random & all values =
average ⇒ standard deviation is 0 ⇒ C is 0
⇒ average residual service time

= half average service time
– When distribution is random & Poisson ⇒ C is 1
⇒ average residual service time

= weighted arithmetic mean

4/16/2006 CS252 s06 Storage 13

Time in Queue

• All tasks in queue (Lengthqueue) ahead of new task
must be completed before task can be serviced

– Each task takes on average Timeserver

– Task at server takes average residual service time to complete

• Chance server is busy is server utilization
⇒ expected time for service is Server utilization ×
Average residual service time

• Timequeue = Lengthqueue + Timeserver
+ Server utilization x Average residual service time

• Substituting definitions for Lengthqueue, Average
residual service time, & rearranging:
Timequeue = Timeserver

x Server utilization/(1-Server utilization)
4/16/2006 CS252 s06 Storage 14

Time in Queue vs. Length of Queue

• Lengthqueue = Arrival rate x Timequeue
– Little’s Law applied to the components of the black box since

they must also be in equilibrium

• Given
1. Timequeue = Timeserver

x Server utilization/(1-Server utilization)
2. Arrival rate × Timeserver = Server utilization

⇒ Lengthqueue = Server utilization2

/(1-Server utilization)
• Mean no. requests in queue slide 6? (50%)
• Lengthqueue = (0.5)2 / (1-0.5) = 0.25/0.5 = 0.5
⇒ 0.5 requests on average in queue

4/16/2006 CS252 s06 Storage 15

M/M/1 Queuing Model
• System is in equilibrium
• Times between 2 successive requests arriving,

“interarrival times”, are exponentially distributed
• Number of sources of requests is unlimited

“infinite population model”
• Server can start next job immediately
• Single queue, no limit to length of queue, and FIFO

discipline, so all tasks in line must be completed
• There is one server
• Called M/M/1 (book also derives M/M/m)

1. Exponentially random request arrival (C2 = 1)
2. Exponentially random service time (C2 = 1)
3. 1 server
– M standing for Markov, mathematician who defined and

analyzed the memoryless processes
4/16/2006 CS252 s06 Storage 16

CS252: Administrivia
• Fun talking during Pizza last Wednesday
• Project Update Meeting Wednesday 4/19, 10 to

12:30
– 635 Soda. Meeting signup online?

• Monday 4/24 Quiz 2 5-8 PM in room ?
– (Mainly Ch 4 to 6)

• Wed 4/26 Bad Career Advice / Bad Talk Advice ? /
Goodbye to Computer Architecture / Your Cal
Cultural History

• Project Presentations Monday 5/1 (all day)
• Project Posters 5/3 Wednesday (11-1 in Soda)
• Final Papers due Friday 5/5

– Email Archana, who will post papers on class web site

4/16/2006 CS252 s06 Storage 17

Example
• 40 disk I/Os / sec, requests are exponentially

distributed, and average service time is 20 ms
⇒ Arrival rate/sec = 40, Timeserver = 0.02 sec
1. On average, how utilized is the disk?
• Server utilization = Arrival rate × Timeserver

= 40 x 0.02 = 0.8 = 80%
2. What is the average time spent in the queue?
• Timequeue = Timeserver

x Server utilization/(1-Server utilization)
= 20 ms x 0.8/(1-0.8) = 20 x 4 = 80 ms

3. What is the average response time for a disk request,
including the queuing time and disk service time?

• Timesystem=Timequeue + Timeserver = 80+20 ms = 100 ms
4/16/2006 CS252 s06 Storage 18

How much better with 2X faster disk?
• Average service time is 10 ms
⇒ Arrival rate/sec = 40, Timeserver = 0.01 sec
1. On average, how utilized is the disk?
• Server utilization = Arrival rate × Timeserver

= 40 x 0.01 = 0.4 = 40%
2. What is the average time spent in the queue?
• Timequeue = Timeserver

x Server utilization/(1-Server utilization)
= 10 ms x 0.4/(1-0.4) = 10 x 2/3 = 6.7 ms

3. What is the average response time for a disk request,
including the queuing time and disk service time?

• Timesystem=Timequeue + Timeserver=6.7+10 ms = 16.7 ms
• 6X faster response time with 2X faster disk!

4/16/2006 CS252 s06 Storage 19

Value of Queueing Theory in practice

• Learn quickly do not try to utilize resource 100%
but how far should back off?

• Allows designers to decide impact of faster
hardware on utilization and hence on response
time

• Works surprisingly well

4/16/2006 CS252 s06 Storage 20

Cross cutting Issues:
Buses ⇒ point-to-point links and switches

?2503 GHz0.5 m2bPCI Express
?53333 / 66 MHz0.5 m32/64PCI

16,256375--10 m1bSerial Attach SCSI
1532080 MHz (DDR)12 m16b(Parallel) SCSI
?3003 GHz2 m2bSerial ATA
2133133 MHz0.5 m8b(Parallel) ATA

MaxMB/sClock ratelengthwidthStandard

• No. bits and BW is per direction ⇒ 2X for both
directions (not shown).

• Since use fewer wires, commonly increase BW via
versions with 2X-12X the number of wires and BW

4/16/2006 CS252 s06 Storage 21

Storage Example: Internet Archive

• Goal of making a historical record of the Internet
– Internet Archive began in 1996
– Wayback Machine interface perform time travel to see what

the website at a URL looked like in the past

• It contains over a petabyte (1015 bytes), and is
growing by 20 terabytes (1012 bytes) of new data
per month

• In addition to storing the historical record, the
same hardware is used to crawl the Web every
few months to get snapshots of the Interne.

4/16/2006 CS252 s06 Storage 22

Internet Archive Cluster
• 1U storage node PetaBox GB2000 from

Capricorn Technologies
• Contains 4 500 GB Parallel ATA (PATA)

disk drives, 512 MB of DDR266 DRAM,
one 10/100/1000 Ethernet interface, and a
1 GHz C3 Processor from VIA (80x86).

• Node dissipates ≈ 80 watts
• 40 GB2000s in a standard VME rack,
⇒ 80 TB of raw storage capacity

• 40 nodes are connected with a 48-port
10/100 or 10/100/1000 Ethernet switch

• Rack dissipates about 3 KW
• 1 PetaByte = 12 racks

4/16/2006 CS252 s06 Storage 23

Estimated Cost

• Via processor, 512 MB of DDR266 DRAM, ATA
disk controller, power supply, fans, and
enclosure = $500

• 7200 RPM Parallel ATA drives holds 500 GB =
$375.

• 48-port 10/100/1000 Ethernet switch and all
cables for a rack = $3000.

• Cost $84,500 for a 80-TB rack.

• 160 Disks are ≈ 60% of the cost

4/16/2006 CS252 s06 Storage 24

Estimated Performance
• 7200 RPM Parallel ATA drives holds 500 GB, has an

average time seek of 8.5 ms, transfers at 50 MB/second
from the disk. The PATA link speed is 133 MB/second.

– performance of the VIA processor is 1000 MIPS.
– operating system uses 50,000 CPU instructions for a disk I/O.
– network protocol stacks uses 100,000 CPU instructions to transmit a

data block between the cluster and the external world
• ATA controller overhead is 0.1 ms to perform a disk I/O.
• Average I/O size is 16 KB for accesses to the historical

record via the Wayback interface, and 50 KB when
collecting a new snapshot

• Disks are limit: ≈ 75 I/Os/s per disk, 300/s per node, 12000/s
per rack, or about 200 to 600 Mbytes / sec Bandwidth per
rack

• Switch needs to support 1.6 to 3.8 Gbits/second over 40
Gbit/sec links

4/16/2006 CS252 s06 Storage 25

Estimated Reliability

• CPU/memory/enclosure MTTF is 1,000,000 hours
(x 40)

• PATA Disk MTTF is 125,000 hours (x 160)
• PATA controller MTTF is 500,000 hours (x 40)
• Ethernet Switch MTTF is 500,000 hours (x 1)
• Power supply MTTF is 200,000 hours (x 40)
• Fan MTTF is 200,000 hours (x 40)
• PATA cable MTTF is 1,000,000 hours (x 40)
• MTTF for the system is 531 hours (≈ 3 weeks)
• 70% of time failures are disks
• 20% of time failures are fans or power supplies

4/16/2006 CS252 s06 Storage 26

RAID Paper Discussion
• What was main motivation for RAID in paper?
• Did prediction of processor performance and disk

capacity hold?
• What were the performance figures of merit to

compare RAID levels?
• What RAID groups sizes were in the paper? Are

they realistic? Why?
• Why would RAID 2 (ECC) have lower predicted

MTTF than RAID 3 (Parity)?

4/16/2006 CS252 s06 Storage 27

RAID Paper Discussion
• How propose balance performance and capacity

of RAID 1 to RAID 5? What do you think of it?
• What were some of the open issues? Which were

significant?
• In retrospect, what do you think were important

contributions?
• What did the authors get wrong?
• In retrospect:

– RAID in Hardware vs. RAID in Software
– Rated MTTF vs. in the field
– Synchronization of disks in an array
– EMC ($10B sales in 2005) and RAID
– Who invented RAID?

4/16/2006 CS252 s06 Storage 28

Summary

• Little’s Law: Lengthsystem = rate x Timesystem(Mean number customers = arrival rate x mean service time)

• Appreciation for relationship of latency and
utilization:

• Timesystem= Timeserver +Timequeue
• Timequeue = Timeserver

x Server utilization/(1-Server utilization)
• Clusters for storage as well as computation
• RAID paper: Its reliability, not performance, that

matters for storage

Proc IOC Device

Queue server
System

