
EECS 252 Graduate Computer
Architecture

Lec 18 – Storage
David Patterson

Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06

4/12/2006 CS252 s06 Storage 2

Review
• Virtual Machine Revival

– Overcome security flaws of modern OSes
– Processor performance no longer highest priority
– Manage Software, Manage Hardware

• “… VMMs give OS developers another opportunity
to develop functionality no longer practical in
today’s complex and ossified operating systems,
where innovation moves at geologic pace .”

[Rosenblum and Garfinkel, 2005]
• Virtualization challenges for processor, virtual

memory, I/O
– Paravirtualization, ISA upgrades to cope with those difficulties

• Xen as example VMM using paravirtualization
– 2005 performance on non-I/O bound, I/O intensive apps: 80% of

native Linux without driver VM, 34% with driver VM
• Opteron memory hierarchy still critical to

performance

4/12/2006 CS252 s06 Storage 3

Case for Storage
• Shift in focus from computation to

communication and storage of information
– E.g., Cray Research/Thinking Machines vs. Google/Yahoo
– “The Computing Revolution” (1960s to 1980s)
⇒ “The Information Age” (1990 to today)

• Storage emphasizes reliability and scalability as
well as cost-performance

• What is “Software king” that determines which
HW acually features used?

– Operating System for storage
– Compiler for processor

• Also has own performance theory—queuing
theory—balances throughput vs. response time

4/12/2006 CS252 s06 Storage 4

Outline

• Magnetic Disks
• RAID
• Administrivia
• Advanced Dependability/Reliability/Availability
• I/O Benchmarks, Performance and Dependability
• Intro to Queueing Theory (if we have time)
• Conclusion

4/12/2006 CS252 s06 Storage 5

Disk Figure of Merit: Areal Density
• Bits recorded along a track

– Metric is Bits Per Inch (BPI)

• Number of tracks per surface
– Metric is Tracks Per Inch (TPI)

• Disk Designs Brag about bit density per unit area
– Metric is Bits Per Square Inch: Areal Density = BPI x TPI

Year Areal Density
1973 2
1979 8
1989 63
1997 3,090
2000 17,100
2006 130,000

1

10

100

1,000

10,000

100,000

1,000,000

1970 1980 1990 2000 2010

A
re

al
 D

en
si

ty

4/12/2006 CS252 s06 Storage 6

Historical Perspective

• 1956 IBM Ramac — early 1970s Winchester
– Developed for mainframe computers, proprietary interfaces
– Steady shrink in form factor: 27 in. to 14 in.

• Form factor and capacity drives market more than performance
• 1970s developments

– 5.25 inch floppy disk formfactor (microcode into mainframe)
– Emergence of industry standard disk interfaces

• Early 1980s: PCs and first generation workstations
• Mid 1980s: Client/server computing

– Centralized storage on file server
» accelerates disk downsizing: 8 inch to 5.25

– Mass market disk drives become a reality
» industry standards: SCSI, IPI, IDE
» 5.25 inch to 3.5 inch drives for PCs, End of proprietary interfaces

• 1900s: Laptops => 2.5 inch drives
• 2000s: What new devices leading to new drives?

4/12/2006 CS252 s06 Storage 7

Future Disk Size and Performance

• Continued advance in capacity (60%/yr) and
bandwidth (40%/yr)

• Slow improvement in seek, rotation (8%/yr)
• Time to read whole disk

Year Sequentially Randomly
(1 sector/seek)

1990 4 minutes 6 hours
2000 12 minutes 1 week(!)
2006 56 minutes 3 weeks (SCSI)
2006 171 minutes 7 weeks (SATA)

4/12/2006 CS252 s06 Storage 8

Use Arrays of Small Disks?

14”
10”5.25”3.5”

3.5”

Disk Array:
1 disk design

Conventional:
4 disk
designs

Low End High End

•Katz and Patterson asked in 1987:
•Can smaller disks be used to close gap in
performance between disks and CPUs?

4/12/2006 CS252 s06 Storage 9

Advantages of Small Formfactor
Disk Drives

Low cost/MB
High MB/volume
High MB/watt
Low cost/Actuator

Cost and Environmental Efficiencies
4/12/2006 CS252 s06 Storage 10

Replace Small Number of Large Disks with
Large Number of Small Disks! (1988 Disks)

Capacity
Volume
Power
Data Rate
I/O Rate
MTTF
Cost

IBM 3390K
20 GBytes
97 cu. ft.

3 KW
15 MB/s

600 I/Os/s
250 KHrs

$250K

IBM 3.5" 0061
320 MBytes

0.1 cu. ft.
11 W

1.5 MB/s
55 I/Os/s
50 KHrs

$2K

x70
23 GBytes
11 cu. ft.

1 KW
120 MB/s

3900 IOs/s
??? Hrs
$150K

Disk Arrays have potential for large data and
I/O rates, high MB per cu. ft., high MB per KW,
but what about reliability?

9X
3X

8X

6X

4/12/2006 CS252 s06 Storage 11

Array Reliability

• Reliability of N disks = Reliability of 1 Disk ÷ N

50,000 Hours ÷ 70 disks = 700 hours

Disk system MTTF: Drops from 6 years to 1 month!

• Arrays (without redundancy) too unreliable to be useful!

Hot spares support reconstruction in parallel with
access: very high media availability can be achieved
Hot spares support reconstruction in parallel with
access: very high media availability can be achieved

4/12/2006 CS252 s06 Storage 12

Redundant Arrays of (Inexpensive) Disks

• Files are "striped" across multiple disks
• Redundancy yields high data availability

– Availability: service still provided to user, even if some
components failed

• Disks will still fail
• Contents reconstructed from data redundantly

stored in the array
⇒ Capacity penalty to store redundant info
⇒ Bandwidth penalty to update redundant info

4/12/2006 CS252 s06 Storage 13

Redundant Arrays of Inexpensive Disks
RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “mirror”
Very high availability can be achieved

• Bandwidth sacrifice on write:
Logical write = two physical writes

• Reads may be optimized
• Most expensive solution: 100% capacity overhead

• (RAID 2 not interesting, so skip)

recovery
group

4/12/2006 CS252 s06 Storage 14

Redundant Array of Inexpensive Disks
RAID 3: Parity Disk

P
10010011
11001101
10010011

. . .
logical record 1

0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

P contains sum of
other disks per stripe
mod 2 (“parity”)
If disk fails, subtract
P from sum of other
disks to find missing information

Striped physical
records

4/12/2006 CS252 s06 Storage 15

RAID 3

• Sum computed across recovery group to
protect against hard disk failures, stored in P
disk

• Logically, a single high capacity, high
transfer rate disk: good for large transfers

• Wider arrays reduce capacity costs, but
decreases availability

• 33% capacity cost for parity if 3 data disks
and 1 parity disk

4/12/2006 CS252 s06 Storage 16

Inspiration for RAID 4

• RAID 3 relies on parity disk to discover
errors on Read

• But every sector has an error detection field
• To catch errors on read, rely on error

detection field vs. the parity disk
• Allows independent reads to different disks

simultaneously

4/12/2006 CS252 s06 Storage 17

Redundant Arrays of Inexpensive Disks
RAID 4: High I/O Rate Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.Disk Columns

Increasing
Logical

Disk
Address

Stripe

Insides of
5 disks
Insides of
5 disks

Example:
small read
D0 & D5,
large write
D12-D15

Example:
small read
D0 & D5,
large write
D12-D15

4/12/2006 CS252 s06 Storage 18

Inspiration for RAID 5

• RAID 4 works well for small reads
• Small writes (write to one disk):

– Option 1: read other data disks, create new sum and write to
Parity Disk

– Option 2: since P has old sum, compare old data to new data,
add the difference to P

• Small writes are limited by Parity Disk: Write to D0, D5
both also write to P disk

D0 D1 D2 D3 P

D4 D5 D6 PD7

4/12/2006 CS252 s06 Storage 19

Redundant Arrays of Inexpensive Disks
RAID 5: High I/O Rate Interleaved Parity

Independent
writes
possible
because of
interleaved
parity

Independent
writes
possible
because of
interleaved
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Disk Columns

Increasing
Logical
Disk

Addresses

Example:
write to
D0, D5
uses disks
0, 1, 3, 4

4/12/2006 CS252 s06 Storage 20

Problems of Disk Arrays:
Small Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old
parity

XOR

XOR

(1. Read) (2. Read)

(3. Write) (4. Write)

RAID-5: Small Write Algorithm
1 Logical Write = 2 Physical Reads + 2 Physical Writes

4/12/2006 CS252 s06 Storage 21

CS252: Administrivia
• Wed 4/12 – Mon 4/17 Storage (Ch 6)
• RAMP Blue meeting Today 3:30-4 380 Soda
• Makeup Pizza: LaVal’s on Euclid, 6-7 PM
• Project Update Meeting Wednesday 4/19
• Monday 4/24 Quiz 2 5-8 PM (Mainly Ch 4 to 6)
• Wed 4/26 Bad Career Advice / Bad Talk Advice
• Project Presentations Monday 5/1 (all day)
• Project Posters 5/3 Wednesday (11-1 in Soda)
• Final Papers due Friday 5/5 (email Archana, who

will post papers on class web site)

4/12/2006 CS252 s06 Storage 22

CS252: Administrivia
• Fri 4/14 Read, comment RAID Paper and

Homework. Be sure to answer
– What was main motivation for RAID in paper?
– Did prediction of processor performance and disk capacity

hold?
– How propose balance performance and capacity of RAID 1 to

RAID 5? What do you think of it?
– What were some of the open issues? Which were significant
– In retrospect, what do you think were important contributions?

What did the authors get wrong?

4/12/2006 CS252 s06 Storage 23

RAID 6: Recovering from 2 failures

• Why > 1 failure recovery?
– operator accidentally replaces the wrong disk during a

failure
– since disk bandwidth is growing more slowly than disk

capacity, the MTT Repair a disk in a RAID system is
increasing
⇒increases the chances of a 2nd failure during repair since
takes longer

– reading much more data during reconstruction meant
increasing the chance of an uncorrectable media failure,
which would result in data loss

4/12/2006 CS252 s06 Storage 24

RAID 6: Recovering from 2 failures
• Network Appliance’s row-diagonal parity or RAID-DP
• Like the standard RAID schemes, it uses redundant

space based on parity calculation per stripe
• Since it is protecting against a double failure, it adds

two check blocks per stripe of data.
– If p+1 disks total, p-1 disks have data; assume p=5

• Row parity disk is just like in RAID 4
– Even parity across the other 4 data blocks in its stripe

• Each block of the diagonal parity disk contains the
even parity of the blocks in the same diagonal

4/12/2006 CS252 s06 Storage 25

Example p = 5
• Row diagonal parity starts by recovering one of the 4 blocks

on the failed disk using diagonal parity
– Since each diagonal misses one disk, and all diagonals miss a

different disk, 2 diagonals are only missing 1 block

• Once the data for those blocks is recovered, then the
standard RAID recovery scheme can be used to recover
two more blocks in the standard RAID 4 stripes

• Process continues until two failed disks are restored

043210
432104
321043
210432
104321
043210

Diagona
l Parity

Row
Parity

Data
Disk 3

Data
Disk 2

Data
Disk 1

Data
Disk 0

4/12/2006 CS252 s06 Storage 26

Berkeley History: RAID-I

• RAID-I (1989)
– Consisted of a Sun 4/280

workstation with 128 MB of DRAM,
four dual-string SCSI controllers, 28
5.25-inch SCSI disks and
specialized disk striping software

• Today RAID is $24 billion
dollar industry, 80% nonPC
disks sold in RAIDs

4/12/2006 CS252 s06 Storage 27

Summary: RAID Techniques: Goal was
performance, popularity due to reliability of
storage

• Disk Mirroring, Shadowing (RAID 1)

Each disk is fully duplicated onto its "shadow"

Logical write = two physical writes

100% capacity overhead

• Parity Data Bandwidth Array (RAID 3)

Parity computed horizontally

Logically a single high data bw disk

• High I/O Rate Parity Array (RAID 5)
Interleaved parity blocks

Independent reads and writes

Logical write = 2 reads + 2 writes

1
0
0
1
0
0
1
1

1
1
0
0
1
1
0
1

1
0
0
1
0
0
1
1

0
0
1
1
0
0
1
0

1
0
0
1
0
0
1
1

1
0
0
1
0
0
1
1

4/12/2006 CS252 s06 Storage 28

Definitions

• Examples on why precise definitions so important
for reliability

• Is a programming mistake a fault, error, or failure?
– Are we talking about the time it was designed

or the time the program is run?
– If the running program doesn’t exercise the mistake,

is it still a fault/error/failure?

• If an alpha particle hits a DRAM memory cell, is it a
fault/error/failure if it doesn’t change the value?

– Is it a fault/error/failure if the memory doesn’t access the changed bit?
– Did a fault/error/failure still occur if the memory had error correction

and delivered the corrected value to the CPU?

4/12/2006 CS252 s06 Storage 29

IFIP Standard terminology

• Computer system dependability: quality of delivered service
such that reliance can be placed on service

• Service is observed actual behavior as perceived by other
system(s) interacting with this system’s users

• Each module has ideal specified behavior, where service
specification is agreed description of expected behavior

• A system failure occurs when the actual behavior deviates
from the specified behavior

• failure occurred because an error, a defect in module
• The cause of an error is a fault
• When a fault occurs it creates a latent error, which becomes

effective when it is activated
• When error actually affects the delivered service, a failure

occurs (time from error to failure is error latency) 4/12/2006 CS252 s06 Storage 30

Fault v. (Latent) Error v. Failure
• An error is manifestation in the system of a fault,

a failure is manifestation on the service of an error
• Is If an alpha particle hits a DRAM memory cell, is it a

fault/error/failure if it doesn’t change the value?
– Is it a fault/error/failure if the memory doesn’t access the changed bit?
– Did a fault/error/failure still occur if the memory had error correction

and delivered the corrected value to the CPU?

• An alpha particle hitting a DRAM can be a fault
• if it changes the memory, it creates an error
• error remains latent until effected memory word is read
• if the effected word error affects the delivered service,

a failure occurs

4/12/2006 CS252 s06 Storage 31

Fault Categories
1. Hardware faults: Devices that fail, such alpha particle hitting

a memory cell
2. Design faults: Faults in software (usually) and hardware

design (occasionally)
3. Operation faults: Mistakes by operations and maintenance

personnel
4. Environmental faults: Fire, flood, earthquake, power failure,

and sabotage
• Also by duration:
1. Transient faults exist for limited time and not recurring
2. Intermittent faults cause a system to oscillate between

faulty and fault-free operation
3. Permanent faults do not correct themselves over time

4/12/2006 CS252 s06 Storage 32

Fault Tolerance vs Disaster Tolerance

• Fault-Tolerance (or more properly, Error-
Tolerance): mask local faults
(prevent errors from becoming failures)

– RAID disks
– Uninterruptible Power Supplies
– Cluster Failover

• Disaster Tolerance: masks site errors
(prevent site errors from causing service
failures)

– Protects against fire, flood, sabotage,..
– Redundant system and service at remote site.
– Use design diversity

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00

4/12/2006 CS252 s06 Storage 33

Case Studies - Tandem Trends
Reported MTTF by Component

0

50

100

150

200

250

300

350

400

450

1985 1987 1989

software

hardware

maintenance

operations

environment

total

Mean Time to System Failure (years)
by Cause

1985 1987 1990
SOFTWARE 2 53 33 Years
HARDWARE 29 91 310 Years
MAINTENANCE 45 162 409 Years
OPERATIONS 99 171 136 Years
ENVIRONMENT 142 214 346 Years
SYSTEM 8 20 21 Years
Problem: Systematic Under-reporting

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00
4/12/2006 CS252 s06 Storage 34

 Cause of System Crashes

20%
10% 5%

50%

18%

5%

15%

53%

69%

15% 18% 21%

0%

20%

40%

60%

80%

100%

1985 1993 2001

Other: app, power,
network failure
System management:
actions + N/problem
Operating System
failure
Hardware failure

(est.)

• VAX crashes ‘85, ‘93 [Murp95]; extrap. to ‘01
• Sys. Man.: N crashes/problem, SysAdmin action

– Actions: set params bad, bad config, bad app install

• HW/OS 70% in ‘85 to 28% in ‘93. In ‘01, 10%?

• Rule of Thumb: Maintenance 10X HW
– so over 5 year product life, ~ 95% of cost is maintenance

Is Maintenance the Key?

4/12/2006 CS252 s06 Storage 35

HW Failures in Real Systems: Tertiary
Disks

Component Total in System Total Failed % Failed
SCSI Controller 44 1 2.3%
SCSI Cable 39 1 2.6%
SCSI Disk 368 7 1.9%
IDE Disk 24 6 25.0%
Disk Enclosure -Backplane 46 13 28.3%
Disk Enclosure - Power Supply 92 3 3.3%
Ethernet Controller 20 1 5.0%
Ethernet Switch 2 1 50.0%
Ethernet Cable 42 1 2.3%
CPU/Motherboard 20 0 0%

•A cluster of 20 PCs in seven 7-foot high, 19-inch wide
racks with 368 8.4 GB, 7200 RPM, 3.5-inch IBM disks.
The PCs are P6-200MHz with 96 MB of DRAM each.
They run FreeBSD 3.0 and the hosts are connected via
switched 100 Mbit/second Ethernet

4/12/2006 CS252 s06 Storage 36

Does Hardware Fail Fast? 4 of 384
Disks that failed in Tertiary Disk

Messages in system log for failed disk No. log
msgs

Duration
(hours)

Hardware Failure (Peripheral device write fault
[for] Field Replaceable Unit)

1763 186

Not Ready (Diagnostic failure: ASCQ = Component
ID [of] Field Replaceable Unit)

1460 90

Recovered Error (Failure Prediction Threshold
Exceeded [for] Field Replaceable Unit)

1313 5

Recovered Error (Failure Prediction Threshold
Exceeded [for] Field Replaceable Unit)

431 17

4/12/2006 CS252 s06 Storage 37

High Availability System Classes
Goal: Build Class 6 Systems

Availability

90.%
99.%
99.9%
99.99%
99.999%
99.9999%
99.99999%

System Type
Unmanaged
Managed
Well Managed
Fault Tolerant
High-Availability
Very-High-Availability
Ultra-Availability

Unavailable
(min/year)

50,000
5,000

500
50

5
.5

.05

Availability
Class

1
2
3
4
5
6
7

UnAvailability = MTTR/MTBF
can cut it in ½ by cutting MTTR or MTBF

From Jim Gray’s “Talk at UC Berkeley on Fault Tolerance " 11/9/00
4/12/2006 CS252 s06 Storage 38

How Realistic is "5 Nines"?

• HP claims HP-9000 server HW and HP-UX OS can
deliver 99.999% availability guarantee “in certain
pre-defined, pre-tested customer environments”

– Application faults?
– Operator faults?
– Environmental faults?

• Collocation sites (lots of computers in 1 building on
Internet) have

– 1 network outage per year (~1 day)
– 1 power failure per year (~1 day)

• Microsoft Network unavailable recently for a day due
to problem in Domain Name Server: if only outage
per year, 99.7% or 2 Nines

4/12/2006 CS252 s06 Storage 39

Outline

• Magnetic Disks
• RAID
• Administrivia
• Advanced Dependability/Reliability/Availability
• I/O Benchmarks, Performance and Dependability
• Intro to Queueing Theory (if we have time)
• Conclusion

4/12/2006 CS252 s06 Storage 40

I/O Performance

Response time = Queue + Device Service time

100%

Response
Time (ms)

Throughput
(% total BW)

0

100

200

300

0%

Proc
Queue

IOC Device

Metrics:
Response Time
vs. Throughput

4/12/2006 CS252 s06 Storage 41

I/O Benchmarks

• For better or worse, benchmarks shape a field
– Processor benchmarks classically aimed at response time for fixed

sized problem
– I/O benchmarks typically measure throughput, possibly with upper

limit on response times (or 90% of response times)

• Transaction Processing (TP) (or On-line TP=OLTP)
– If bank computer fails when customer withdraw money, TP system

guarantees account debited if customer gets $ & account
unchanged if no $

– Airline reservation systems & banks use TP

• Atomic transactions makes this work
• Classic metric is Transactions Per Second (TPS)

4/12/2006 CS252 s06 Storage 42

I/O Benchmarks: Transaction Processing
• Early 1980s great interest in OLTP

– Expecting demand for high TPS (e.g., ATM machines, credit cards)
– Tandem’s success implied medium range OLTP expands
– Each vendor picked own conditions for TPS claims, report only CPU

times with widely different I/O
– Conflicting claims led to disbelief of all benchmarks ⇒ chaos

• 1984 Jim Gray (Tandem) distributed paper to Tandem
+ 19 in other companies propose standard benchmark

• Published “A measure of transaction processing
power,” Datamation, 1985 by Anonymous et. al

– To indicate that this was effort of large group
– To avoid delays of legal department of each author’s firm
– Still get mail at Tandem to author “Anonymous”

• Led to Transaction Processing Council in 1988
– www.tpc.org

4/12/2006 CS252 s06 Storage 43

I/O Benchmarks: TP1 by Anon et. al
• DebitCredit Scalability: size of account, branch, teller,

history function of throughput
TPS Number of ATMs Account-file size

10 1,000 0.1 GB
100 10,000 1.0 GB

1,000 100,000 10.0 GB
10,000 1,000,000 100.0 GB

– Each input TPS =>100,000 account records, 10 branches, 100 ATMs
– Accounts must grow since a person is not likely to use the bank more
frequently just because the bank has a faster computer!

• Response time: 95% transactions take ≤ 1 second
• Report price (initial purchase price + 5 year

maintenance = cost of ownership)
• Hire auditor to certify results

4/12/2006 CS252 s06 Storage 44

Unusual Characteristics of TPC
• Price is included in the benchmarks

– cost of HW, SW, and 5-year maintenance agreements
included ⇒ price-performance as well as performance

• The data set generally must scale in size as
the throughput increases

– trying to model real systems, demand on system and size
of the data stored in it increase together

• The benchmark results are audited
– Must be approved by certified TPC auditor, who enforces

TPC rules ⇒ only fair results are submitted

• Throughput is the performance metric but
response times are limited

– eg, TPC-C: 90% transaction response times < 5 seconds

• An independent organization maintains the
benchmarks

– COO ballots on changes, meetings, to settle disputes...

4/12/2006 CS252 s06 Storage 45

TPC Benchmark History/Status

Benchmark Data Size (GB) Performance
Metric

1st Results

A: Debit Credit (retired) 0.1 to 10 transactions/s Jul-90
B: Batch Debit Credit
(retired)

0.1 to 10 transactions/s Jul-91

C: Complex Query
OLTP

100 to 3000
(min. 07 * tpm)

new order
trans/min (tpm)

Sep-92

D: Decision Support
(retired)

100, 300, 1000 queries/hour Dec-95

H: Ad hoc decision
support

100, 300, 1000 queries/hour Oct-99

R: Business reporting
decision support (retired)

1000 queries/hour Aug-99

W: Transactional web ~ 50, 500 web inter-
actions/sec.

Jul-00

App: app. server & web
services

 Web Service
Interactions/sec

(SIPS)

Jun-05

 4/12/2006 CS252 s06 Storage 46

I/O Benchmarks via SPEC

• SFS 3.0 Attempt by NFS companies to agree on
standard benchmark

– Run on multiple clients & networks (to prevent bottlenecks)
– Same caching policy in all clients
– Reads: 85% full block & 15% partial blocks
– Writes: 50% full block & 50% partial blocks
– Average response time: 40 ms
– Scaling: for every 100 NFS ops/sec, increase capacity 1GB

• Results: plot of server load (throughput) vs. response
time & number of users

– Assumes: 1 user => 10 NFS ops/sec
– 3.0 for NSF 3.0

• Added SPECMail (mailserver), SPECWeb (webserver)
benchmarks

4/12/2006 CS252 s06 Storage 47

2005 Example SPEC SFS Result:
NetApp FAS3050c NFS servers
• 2.8 GHz Pentium Xeon microprocessors, 2 GB of DRAM

per processor, 1GB of Non-volatile memory per system
• 4 FDDI networks; 32 NFS Daemons, 24 GB file size
• 168 fibre channel disks: 72 GB, 15000 RPM, 2 or 4 FC

controllers

0
1
2
3
4
5
6
7
8

0 10000 20000 30000 40000 50000 60000

Operations/second

R
es

po
ns

e
tim

e
(m

s)

34,089 47,927

4 processors
2 processors

4/12/2006 CS252 s06 Storage 48

Availability benchmark methodology

• Goal: quantify variation in QoS metrics as events occur
that affect system availability

• Leverage existing performance benchmarks
– to generate fair workloads
– to measure & trace quality of service metrics

• Use fault injection to compromise system
– hardware faults (disk, memory, network, power)
– software faults (corrupt input, driver error returns)
– maintenance events (repairs, SW/HW upgrades)

• Examine single-fault and multi-fault workloads
– the availability analogues of performance micro- and macro-

benchmarks

4/12/2006 CS252 s06 Storage 49

Time (minutes)
0 10 20 30 40 50 60 70 80 90 100 110

80

100

120

140

160

0

1

2

Hits/sec
failures tolerated

0 10 20 30 40 50 60 70 80 90 100 110

H
its

 p
er

 s
ec

on
d

190

195

200

205

210

215

220

#f
ai

lu
re

s
to

le
ra

te
d

0

1

2

Reconstruction

Reconstruction

Example single-fault result

• Compares Linux and Solaris reconstruction
– Linux: minimal performance impact but longer window of vulnerability

to second fault
– Solaris: large perf. impact but restores redundancy fast

Linux

Solaris

4/12/2006 CS252 s06 Storage 50

Reconstruction policy (2)
• Linux: favors performance over data availability

– automatically-initiated reconstruction, idle bandwidth
– virtually no performance impact on application
– very long window of vulnerability (>1hr for 3GB RAID)

• Solaris: favors data availability over app. perf.
– automatically-initiated reconstruction at high BW
– as much as 34% drop in application performance
– short window of vulnerability (10 minutes for 3GB)

• Windows: favors neither!
– manually-initiated reconstruction at moderate BW
– as much as 18% app. performance drop
– somewhat short window of vulnerability (23 min/3GB)

4/12/2006 CS252 s06 Storage 51

Introduction to Queueing Theory

• More interested in long term, steady state than in
startup => Arrivals = Departures

• Little’s Law:
Mean number tasks in system = arrival rate x
mean reponse time

– Observed by many, Little was first to prove

• Applies to any system in equilibrium, as long as
black box not creating or destroying tasks

Arrivals Departures

4/12/2006 CS252 s06 Storage 52

Deriving Little’s Law
• Timeobserve = elapsed time that observe a system
• Numbertask = number of task during Timeobserve
• Timeaccumulated = sum of elapsed times for each task
Then
• Mean number tasks in system = Timeaccumulated / Timeobserve
• Mean response time = Timeaccumulated / Numbertask
• Arrival Rate = Numbertask / Timeobserve
Factoring RHS of 1st equation
• Timeaccumulated / Timeobserve = Timeaccumulated / Numbertask x

Numbertask / Timeobserve
Then get Little’s Law:
• Mean number tasks in system = Arrival Rate x

Mean response time

4/12/2006 CS252 s06 Storage 53

A Little Queuing Theory: Notation

• Notation:
Timeserver average time to service a task
Average service rate = 1 / Timeserver (traditionally µ)
Timequeue average time/task in queue
Timesystem average time/task in system

= Timequeue + Timeserver
Arrival rate avg no. of arriving tasks/sec (traditionally λ)

• Lengthserver average number of tasks in service
Lengthqueue average length of queue
Lengthsystem average number of tasks in service

= Lengthqueue + Lengthserver
Little’s Law: Lengthserver = Arrival rate x Timeserver
(Mean number tasks = arrival rate x mean service time)

Proc IOC Device

Queue server
System

4/12/2006 CS252 s06 Storage 54

Server Utilization

• For a single server, service rate = 1 / Timeserver

• Server utilization must be between 0 and 1, since
system is in equilibrium (arrivals = departures);
often called traffic intensity, traditionally ρ)

• Server utilization = mean number tasks in
service = Arrival rate x Timeserver

• What is disk utilization if get 50 I/O requests per
second for disk and average disk service time is
10 ms (0.01 sec)?

• Server utilization = 50/sec x 0.01 sec = 0.5
• Or server is busy on average 50% of time

4/12/2006 CS252 s06 Storage 55

Time in Queue vs. Length of Queue

• We assume First In First Out (FIFO) queue
• Relationship of time in queue (Timequeue) to mean

number of tasks in queue (Lengthqueue) ?
• Timequeue = Lengthqueue x Timeserver

+ “Mean time to complete service of
task when new task arrives if server is busy”

• New task can arrive at any instant; how predict
last part?

• To predict performance, need to know sometime
about distribution of events

4/12/2006 CS252 s06 Storage 56

Poisson Distribution of Random Variables

• A variable is random if it takes one of a specified
set of values with a specified probability

– you cannot know exactly what its next value will be, but you may know
the probability of all possible values

• I/O Requests can be modeled by a random variable
because OS normally switching between several
processes generating independent I/O requests

– Also given probabilistic nature of disks in seek and rotational delays

• Can characterize distribution of values of a random
variable with discrete values using a histogram

– Divides range between the min & max values into buckets
– Histograms then plot the number in each bucket as columns
– Works for discrete values e.g., number of I/O requests?

• What about if not discrete? Very fine buckets

4/12/2006 CS252 s06 Storage 57

Characterizing distribution of a random
variable
• Need mean time and a measure of variance
• For mean, use weighted arithmetic mean(WAM):
• fi = frequency of task i
• Ti = time for tasks I
weighted arithmetic mean

= f1×T1 + f2×T2 + . . . +fn×Tn
• For variance, instead of standard deviation, use

Variance (square of standard deviation) for WAM:
• Variance = (f1×T12 + f2×T22 + . . . +fn×Tn2) – WAM2

– If time is miliseconds, Variance units are square milliseconds!

• Got a unitless measure of variance?

4/12/2006 CS252 s06 Storage 58

Squared Coefficient of Variance (C2)
• C2 = Variance / WAM2

– Unitless measure
• C = sqrt(Variance)/WAM = StDev/WAM
• Trying to characterize random events, but to predict

performance need distribution of random events where math
is tractable

• Most popular such distribution is exponential distribution,
where C = 1

• Note using constant to characterize variability about the mean
– Invariance of C over time ⇒ history of events has no impact on

probability of an event occurring now
– Called memoryless, an important assumption to predict behavior
– (Suppose not; then have to worry about the exact arrival times of

requests relative to each other ⇒ make math considerably less
tractable!)

• Most widely used exponential distribution is
Poisson

4/12/2006 CS252 s06 Storage 59

Poisson Distribution

• Most widely used exponential distribution is
Poisson

• Described by probability mass function:
Probability (k) = e-a x ak / k!

– where a = Rate of events x Elapsed time
• If interarrival times are exponentially distributed and

use arrival rate from above for rate of events,
number of arrivals in time interval t is a Poisson
process

• Time in Queue vs. Length of Queue?
• ½ x Arimetic mean x (1 +C2)

4/12/2006 CS252 s06 Storage 60

Summary
• Disks: Arial Density now 30%/yr vs. 100%/yr in 2000s
• TPC: price performance as normalizing configuration feature

– Auditing to ensure no foul play
– Throughput with restricted response time is normal measure

• Fault ⇒ Latent errors in system ⇒ Failure in service
• Components often fail slowly
• Real systems: problems in maintenance, operation as well as

hardware, software
• Queuing models assume state of equilibrium:

input rate = output rate
• Little’s Law: Lengthsystem = rate x Timesystem(Mean number customers = arrival rate x mean service time)

Proc IOC Device

Queue server
System

