
EECS 252 Graduate Computer
Architecture

Lec 16 – Papers, MP Future
Directions, and Midterm Review

David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06

1/3/2007 CS252 S06 Lec16 Review 2

Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic

Scheduling
• (Start) Tomasulo Algorithm
• Conclusion

1/3/2007 CS252 S06 Lec16 Review 3

Amdahl’s Law Paper
• Gene Amdahl, "Validity of the Single Processor Approach to

Achieving Large-Scale Computing Capabilities", AFIPS
Conference Proceedings, (30), pp. 483-485, 1967.

• How long is paper?
• How much of it is Amdahl’s Law?
• What other comments about parallelism besides

Amdahl’s Law?

1/3/2007 CS252 S06 Lec16 Review 4

Parallel Programmer Productivity
• Lorin Hochstein et al "Parallel Programmer Productivity: A Case Study

of Novice Parallel Programmers." International Conference for High
Performance Computing, Networking and Storage (SC'05). Nov. 2005

• What did they study?
• What is argument that novice parallel programmers

are a good target for High Performance Computing?
• How can account for variability in talent between

programmers?
• What programmers studied?
• What programming styles investigated?
• How big multiprocessor?
• How measure quality?
• How measure cost?

1/3/2007 CS252 S06 Lec16 Review 5

Parallel Programmer Productivity
• Lorin Hochstein et al "Parallel Programmer Productivity: A Case Study

of Novice Parallel Programmers." International Conference for High
Performance Computing, Networking and Storage (SC'05). Nov. 2005

• What hypotheses investigated?
• What were results?
• Assuming these results of programming productivity

reflect the real world, what should architectures of
the future do (or not do)?

• How would you redesign the experiment they did?
• What other metrics would be important to capture?
• Role of Human Subject Experiments in Future of

Computer Systems Evaluation?

1/3/2007 CS252 S06 Lec16 Review 6

CS 252 Administrivia

• Monday March 20 Quiz 5-8 PM 405 Soda
• Monday March 20 lecture – Q&A, problem sets with

Archana
• Wednesday March 22 no class: project meetings in

635 Soda
• Spring Break March 27 – March 31
• Chapter 5 Advanced Memory Hierarchy
• Chapter 6 Storage
• Interconnect Appendix

1/3/2007 CS252 S06 Lec16 Review 7

High Level Message
• Everything is changing
• Old conventional wisdom is out
• We DESPERATELY need a new architectural solution for

microprocessors based on parallelism
– My focus is “All purpose” computers vs. “single purpose”

computers
⇒ Each company gets to design one

• Need to create a “watering hole” to bring everyone
together to quickly find that solution

– architects, language designers, application experts, numerical
analysts, algorithm designers, programmers, …

1/3/2007 CS252 S06 Lec16 Review 8

Outline
• Part I: A New Agenda for Computer Architecture

– Old Conventional Wisdom vs. New Conventional Wisdom
– New Metrics for Success
– Innovating at HW/SW interface without compilers
– New Classification for Architectures and Apps

• Part II: A “Watering Hole” for Parallel Systems
– Research Accelerator for Multiple Processors

• Conclusion

1/3/2007 CS252 S06 Lec16 Review 9

• Old CW: Power is free, Transistors expensive
• New CW: “Power wall” Power expensive, Xtors free

(Can put more on chip than can afford to turn on)
• Old: Multiplies are slow, Memory access is fast
• New: “Memory wall” Memory slow, multiplies fast

(200 clocks to DRAM memory, 4 clocks for FP multiply)
• Old : Increasing Instruction Level Parallelism via compilers, innovation

(Out-of-order, speculation, VLIW, …)
• New CW: “ILP wall” diminishing returns on more ILP
• New: Power Wall + Memory Wall + ILP Wall = Brick Wall

– Old CW: Uniprocessor performance 2X / 1.5 yrs
– New CW: Uniprocessor performance only 2X / 5 yrs?

Conventional Wisdom (CW)
in Computer Architecture

1/3/2007 CS252 S06 Lec16 Review 10

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson,
Computer Architecture: A Quantitative
Approach, 4th edition, 2006

⇒ Sea change in chip
design: multiple “cores” or
processors per chip

3X

1/3/2007 CS252 S06 Lec16 Review 11

Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz,
10 micron PMOS, 11 mm2 chip

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage
pipeline, 40,760 transistors, 3 MHz,
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ≈ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)

1/3/2007 CS252 S06 Lec16 Review 12

Déjà vu all over again?
“… today’s processors … are nearing an impasse as technologies approach

the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer had bad timing (Uniprocessor performance↑)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore
designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2005)
• All microprocessor companies switch to MP (2X CPUs / 2 yrs)

⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

32442Threads/chip

4221Threads/Processor

8222Processors/chip

Sun/’05IBM/’04Intel/’06AMD/’05Manufacturer/Year

1/3/2007 CS252 S06 Lec16 Review 13

• Old CW: Since cannot know future programs, find set
of old programs to evaluate designs of computers for
the future

– E.g., SPEC2006

• What about parallel codes?
– Few available, tied to old models, languages, architectures, …

• New approach: Design computers of future for
numerical methods important in future

• Claim: key methods for next decade are 7 dwarves (+
a few), so design for them!

– Representative codes may vary over time, but these numerical
methods will be important for > 10 years

21st Century Computer Architecture

1/3/2007 CS252 S06 Lec16 Review 14

High-end simulation in the physical
sciences = 7 numerical methods:

1. Structured Grids (including locally
structured grids, e.g. Adaptive Mesh
Refinement)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra
6. Particles
7. Monte Carlo

Well-defined targets from algorithmic,
software, and architecture standpoint

Phillip Colella’s “Seven dwarfs”

• If add 4 for embedded,
covers all 41 EEMBC
benchmarks

8. Search/Sort
9. Filter

10. Combinational logic
11. Finite State Machine

• Note: Data sizes (8 bit to 32
bit) and types (integer,
character) differ, but
algorithms the same

Slide from “Defining Software
Requirements for Scientific
Computing”, Phillip Colella, 2004

1/3/2007 CS252 S06 Lec16 Review 15

• SPECfp
– 8 Structured grid

» 3 using Adaptive Mesh Refinement
– 2 Sparse linear algebra
– 2 Particle methods
– 5 TBD: Ray tracer, Speech Recognition, Quantum

Chemistry, Lattice Quantum Chromodynamics
(many kernels inside each benchmark?)

• SPECint
– 8 Finite State Machine
– 2 Sorting/Searching
– 2 Dense linear algebra (data type differs from dwarf)
– 1 TBD: 1 C compiler (many kernels?)

6/11 Dwarves Covers 24/30 SPEC

1/3/2007 CS252 S06 Lec16 Review 16

21st Century Measures of Success
• Old CW: Don’t waste resources on accuracy,

reliability
– Speed kills competition
– Blame Microsoft for crashes

• New CW: SPUR is critical for future of IT
– Security
– Privacy
– Usability (cost of ownership)
– Reliability

• Success not limited to performance/cost

“20th century vs. 21st century C&C: the SPUR manifesto,”
Communications of the ACM , 48:3, 2005.

1/3/2007 CS252 S06 Lec16 Review 17

21st Century Code Generation

• Old CW: Takes a decade for compilers to introduce
an architecture innovation

• New approach: “Auto-tuners” 1st run variations of
program on computer to find best combinations of
optimizations (blocking, padding, …) and algorithms,
then produce C code to be compiled for that
computer

– E.g., PHiPAC (BLAS), Atlas (BLAS),
Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

– Can achieve 10X over conventional compiler

• One Auto-tuner per dwarf?
– Exist for Dense Linear Algebra, Sparse Linear Algebra, Spectral

1/3/2007 CS252 S06 Lec16 Review 18

Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking
for finite element problem [Im, Yelick, Vuduc, 2005]

1/3/2007 CS252 S06 Lec16 Review 19

Best Sparse Blocking for 8 Computers

• All possible column block sizes selected for 8 computers; How could
compiler know?

IBM
Power 3

Intel/HP
Itanium 2

IBM Power 4,
Intel/HP Itanium

Sun Ultra 2,
Sun Ultra 3,

AMD Opteron
Intel

Pentium M8

4

2

1
1 2 4 8

ro
w

 b
lo

ck
 si

ze
 (r

)

column block size (c)

1/3/2007 CS252 S06 Lec16 Review 20

Operand Size and Type
Programmer should be able to specify data size, type

independent of algorithm
• 1 bit (Boolean*)
• 8 bits (Integer, ASCII)
• 16 bits (Integer, DSP fixed pt, Unicode*)
• 32 bits (Integer, SP Fl. Pt., Unicode*)
• 64 bits (Integer, DP Fl. Pt.)
• 128 bits (Integer*, Quad Precision Fl. Pt.*)
• 1024 bits (Crypto*)
* Not supported well in most programming languages

and optimizing compilers

1/3/2007 CS252 S06 Lec16 Review 21

Style of Parallelism

Data Level Parallel
(Same operation

lots of data, 1 PC)

Programmer wants code to run on as many
parallel architectures as possible so (if possible)

Architect wants to run as many different types
of parallel programs as possible so

Simpler Programming model,,
Less HW Control

More Flexible,
More HW Control

Inst. Level Parallel
(Different operations
lots of data, 1 PC)

Thread Level Parallel
(Different operations
lots of data, N PCs)

Separate
address
spaces

Single
address
space

1/3/2007 CS252 S06 Lec16 Review 22

Parallel Framework – Apps (so far)
• Original 7 dwarves: 6 data parallel, 1 Sep. Addr.TLP
• Bonus 4 dwarves: 2 data parallel, 2 Separate Addr. TLP
• EEMBC (Embedded): DLP 19, 12 Separate Addr. TLP
• SPEC (Desktop): 14 DLP, 2 Separate Address TLP

E
E
M
B
C

E
E
M
B
C

S
P
E
C

S
P
E
C D

w
a
r
f
S

D
W
A
R
F
S

Most New
Architectures

Most
Important
Apps?

DLP DLP ILPILP TLPTLP
Separate Separate
AddressesAddresses

Shared Shared
AddressAddress

1/3/2007 CS252 S06 Lec16 Review 23

Amount of Explicit Parallelism

1

10

100

1000

Pa
ra

lle
lis

m

1 4 16 64 25
6

10
24

Data

ILP

TLP - Separate Addr

TLP - Shared Addr

Operand Size CryptoBoolean

• Given natural operand size and level of parallelism, how
parallel is computer or how must parallelism available in
application?

• Proposed Parallel Framework

More performance,
Better power efficiency

Easy for Programmer

Simpler Prog. model

More flexible

1/3/2007 CS252 S06 Lec16 Review 24

Amount of Explicit Parallelism

1

10

100

1000

Pa
ra

lle
lis

m

1 4 16 64 25
6

10
24

Data

ILP

TLP - Separate Addr

TLP - Shared Addr

Operand Size CryptoBoolean

• Original 7 dwarves: 6 data parallel, 1 Sep. Addr.TLP
• Bonus 4 dwarves: 2 data parallel, 2 Separate Addr. TLP
• EEMBC (Embedded): DLP 19, 12 Separate Addr. TLP
• SPEC (Desktop): 14 DLP, 2 Separate Address TLP

E
E
M
B
C

S
P
E
C

D
W
A
R
F
S

E
E
M
B
C

S
P
E
C

D
W
A
R
F
S

1/3/2007 CS252 S06 Lec16 Review 25

What Computer Architecture brings to Table
• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in
technology

• Culture of well-defined interfaces that are carefully
implemented and thoroughly checked

1/3/2007 CS252 S06 Lec16 Review 26

1) Taking Advantage of Parallelism
• Increasing throughput of server computer via

multiple processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing
sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative
caches

• Pipelining: overlap instruction execution to reduce
the total time to complete an instruction sequence.

– Not every instruction depends on immediate predecessor ⇒
executing instructions completely/partially in parallel possible

– Classic 5-stage pipeline:
1) Instruction Fetch (Ifetch),
2) Register Read (Reg),
3) Execute (ALU),
4) Data Memory Access (Dmem),
5) Register Write (Reg)

1/3/2007 CS252 S06 Lec16 Review 27

• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an actual
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

1/3/2007 CS252 S06 Lec16 Review 28

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards

1/3/2007 CS252 S06 Lec16 Review 29

Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

1/3/2007 CS252 S06 Lec16 Review 30

Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW a,Ra
LW Re,e
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load
Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e
ADD Ra,Rb,Rc
LW Rf,f
SW a,Ra
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.

1/3/2007 CS252 S06 Lec16 Review 31

2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items

whose addresses are close by tend to be referenced soon
(e.g., straight-line code, array access)

• Last 30 years, HW relied on locality for memory perf.

P MEM$

1/3/2007 CS252 S06 Lec16 Review 32

3) Focus on the Common Case
• Common sense guides computer design

– Since its engineering, common sense is valuable
• In making a design trade-off, favor the frequent

case over the infrequent case
– E.g., Instruction fetch and decode unit used more frequently

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done

faster than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve

performance by optimizing more common case of no overflow
– May slow down overflow, but overall performance improved by

optimizing for the normal case
• What is frequent case and how much performance

improved by making case faster => Amdahl’s Law

1/3/2007 CS252 S06 Lec16 Review 33

4) Amdahl’s Law

()
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction Fraction

1
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

()enhanced
maximum Fraction - 1

1 Speedup =

() ⎥
⎦

⎤
⎢
⎣

⎡
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime ExTime 1

1/3/2007 CS252 S06 Lec16 Review 34

5) Processor performance equation

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

CPU time = Seconds = Instructions x Cycles x Seconds
Program Program Instruction Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time

1/3/2007 CS252 S06 Lec16 Review 35

Latency Lags Bandwidth (last ~20 years)

• Performance Milestones
• Processor: ‘286, ‘386, ‘486,

Pentium, Pentium Pro,
Pentium 4 (21x,2250x)

• Ethernet: 10Mb, 100Mb,
1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain
DRAM, Page Mode DRAM, 32b,
64b, SDRAM,
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200, 10000,
15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement

Relative
BW

Improve
ment

Processor

Memory

Network

Disk

(Latency improvement
= Bandwidth improvement)

CPU high,
Memory low
(“Memory
Wall”)

1/3/2007 CS252 S06 Lec16 Review 36

Rule of Thumb for Latency Lagging BW

• In the time that bandwidth doubles, latency
improves by no more than a factor of 1.2 to 1.4

(and capacity improves faster than bandwidth)

• Stated alternatively:
Bandwidth improves by more than the square
of the improvement in Latency

1/3/2007 CS252 S06 Lec16 Review 37

Define and quantity power (1 / 2)
• For CMOS chips, traditional dominant energy

consumption has been in switching transistors,
called dynamic power

witchedFrequencySVoltageLoadCapacitivePowerdynamic ×××=
22/1

• For mobile devices, energy better metric
VoltageLoadCapacitiveEnergydynamic

2
×=

• For a fixed task, slowing clock rate (frequency
switched) reduces power, but not energy

• Capacitive load a function of number of transistors
connected to output and technology, which
determines capacitance of wires and transistors

• Dropping voltage helps both, so went from 5V to 1V
• To save energy & dynamic power, most CPUs now

turn off clock of inactive modules (e.g. Fl. Pt. Unit)
1/3/2007 CS252 S06 Lec16 Review 38

Define and quantity power (2 / 2)
• Because leakage current flows even when a

transistor is off, now static power important too

• Leakage current increases in processors with
smaller transistor sizes

• Increasing the number of transistors increases
power even if they are turned off

• In 2006, goal for leakage is 25% of total power
consumption; high performance designs at 40%

• Very low power systems even gate voltage to
inactive modules to control loss due to leakage

VoltageCurrentPower staticstatic ×=

1/3/2007 CS252 S06 Lec16 Review 39

Define and quantity cost ICs

• For cost effective dies, cost ≈ f(die_area2)

Test_Die
Die_Area 2

Wafer_diam
Die_Area

2m/2)(Wafer_dia per wafer Dies −
⋅

×−= ππ

α

α

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ×

+×=
Die_area sity Defect_Den 1 ld Wafer_yieYield Die

yield test Final
cost Packaging cost Testing cost Die cost IC ++

=

yield Die per Wafer Dies
costWafer cost Die
×

=
In 2006: α = 4,
12” (30 cm) wafer = $5k - $6k,
Defect_Density = 0.4/cm2

1/3/2007 CS252 S06 Lec16 Review 40

Define and quantity dependability
• Module reliability = measure of continuous service

accomplishment (or time to failure).
2 metrics

1. Mean Time To Failure (MTTF) measures Reliability
2. Failures In Time (FIT) = 1/MTTF, the rate of failures

• Traditionally reported as failures per billion hours of operation

• Mean Time To Repair (MTTR) measures Service
Interruption
– Mean Time Between Failures (MTBF) = MTTF+MTTR

• Module availability measures service as alternate
between the 2 states of accomplishment and
interruption (number between 0 and 1, e.g. 0.9)

• Module availability = MTTF / (MTTF + MTTR)

1/3/2007 CS252 S06 Lec16 Review 41

Example calculating reliability
• If modules have exponentially distributed

lifetimes (age of module does not affect
probability of failure), overall failure rate is the
sum of failure rates of the modules

• Calculate FIT and MTTF for 10 disks (1M hour
MTTF per disk), 1 disk controller (0.5M hour
MTTF), and 1 power supply (0.2M hour MTTF):

hours
MTTF

FIT

eFailureRat

000,59
000,17/000,000,000,1

000,17
000,000,1/17

000,000,1/5210
000,200/1000,500/1)000,000,1/1(10

≈
=
=
=

++=
++×=

1/3/2007 CS252 S06 Lec16 Review 42

How Summarize Suite Performance

• Since ratios, proper mean is geometric mean
(SPECRatio unitless, so arithmetic mean meaningless)

n
n

i
iSPECRatioeanGeometricM ∏

=

=
1

1. Geometric mean of the ratios is the same as the
ratio of the geometric means

2. Ratio of geometric means
= Geometric mean of performance ratios
⇒ choice of reference computer is irrelevant!

• These two points make geometric mean of ratios
attractive to summarize performance

1/3/2007 CS252 S06 Lec16 Review 43

How Summarize Suite Performance

• Does a single mean well summarize performance of
programs in benchmark suite?

• Can decide if mean a good predictor by characterizing
variability of distribution using standard deviation

• Like geometric mean, geometric standard deviation is
multiplicative rather than arithmetic

• Can simply take the logarithm of SPECRatios, compute
the standard mean and standard deviation, and then
take the exponent to convert back:

()

()()()i

n

i
i

SPECRatioStDevtDevGeometricS

SPECRatio
n

eanGeometricM

lnexp

ln1exp
1

=

⎟
⎠

⎞
⎜
⎝

⎛
×= ∑

=

1/3/2007 CS252 S06 Lec16 Review 44

Summary #1/3:
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

1/3/2007 CS252 S06 Lec16 Review 45

Summary #2/3: Caches
• The Principle of Locality:

– Program access a relatively small portion of the address space at any
instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!
• Write Policy: Write Through vs. Write Back
• Today CPU time is a function of (ops, cache misses)

vs. just f(ops): affects Compilers, Data structures, and
Algorithms

1/3/2007 CS252 S06 Lec16 Review 46

Summary #3/3: TLB, Virtual Memory
• Page tables map virtual address to physical address
• TLBs are important for fast translation
• TLB misses are significant in processor performance

– funny times, as most systems can’t access all of 2nd level cache without
TLB misses!

• Caches, TLBs, Virtual Memory all understood by examining how
they deal with 4 questions:
1) Where can block be placed?
2) How is block found?
3) What block is replaced on miss?
4) How are writes handled?

• Today VM allows many processes to share single memory
without having to swap all processes to disk; today VM
protection is more important than memory hierarchy benefits,
but computers insecure

1/3/2007 CS252 S06 Lec16 Review 47

Instruction-Level Parallelism (ILP)
• Basic Block (BB) ILP is quite small

– BB: a straight-line code sequence with no branches in
except to the entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25%
=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other
• To obtain substantial performance

enhancements, we must exploit ILP across
multiple basic blocks

• Simplest: loop-level parallelism to exploit
parallelism among iterations of a loop. E.g.,

for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

1/3/2007 CS252 S06 Lec16 Review 48

Loop-Level Parallelism
• Exploit loop-level parallelism to parallelism by

“unrolling loop” either by
1. dynamic via branch prediction or
2. static via loop unrolling by compiler

(Another way is vectors, to be covered later)
• Determining instruction dependence is critical to

Loop Level Parallelism
• If 2 instructions are

– parallel, they can execute simultaneously in a
pipeline of arbitrary depth without causing any
stalls (assuming no structural hazards)

– dependent, they are not parallel and must be
executed in order, although they may often be
partially overlapped

1/3/2007 CS252 S06 Lec16 Review 49

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table: Lower bits of PC address

index table of 1-bit values
– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 iteratios before exit):

– End of loop case, when it exits instead of looping as before
– First time through loop on next time through code, when it

predicts exit instead of looping

1/3/2007 CS252 S06 Lec16 Review 50

• Solution: 2-bit scheme where change prediction
only if get misprediction twice

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process

Dynamic Branch Prediction

T

T NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT
T

NT

1/3/2007 CS252 S06 Lec16 Review 51

Why can Tomasulo overlap
iterations of loops?

• Register renaming
– Multiple iterations use different physical destinations for

registers (dynamic loop unrolling).

• Reservation stations
– Permit instruction issue to advance past integer control flow

operations
– Also buffer old values of registers - totally avoiding the WAR

stall

• Other perspective: Tomasulo building data
flow dependency graph on the fly

1/3/2007 CS252 S06 Lec16 Review 52

Tomasulo’s scheme offers 2 major
advantages
1. Distribution of the hazard detection logic

– distributed reservation stations and the CDB
– If multiple instructions waiting on single result, & each

instruction has other operand, then instructions can be
released simultaneously by broadcast on CDB

– If a centralized register file were used, the units would
have to read their results from the registers when
register buses are available

2. Elimination of stalls for WAW and WAR
hazards

1/3/2007 CS252 S06 Lec16 Review 53

Tomasulo Drawbacks

• Complexity
– delays of 360/91, MIPS 10000, Alpha 21264,

IBM PPC 620 in CA:AQA 2/e, but not in silicon!

• Many associative stores (CDB) at high speed
• Performance limited by Common Data Bus

– Each CDB must go to multiple functional units
⇒high capacitance, high wiring density

– Number of functional units that can complete per cycle
limited to one!

» Multiple CDBs ⇒ more FU logic for parallel assoc stores

• Non-precise interrupts!
– We will address this later

1/3/2007 CS252 S06 Lec16 Review 54

Tomasulo
• Reservations stations: renaming to larger set of

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks
(integer units gets ahead, beyond branches)

• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Intel Pentium 4, IBM Power 5,
AMD Athlon/Opteron, …

1/3/2007 CS252 S06 Lec16 Review 55

ILP
• Leverage Implicit Parallelism for Performance:

Instruction Level Parallelism
• Loop unrolling by compiler to increase ILP
• Branch prediction to increase ILP
• Dynamic HW exploiting ILP

– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another

1/3/2007 CS252 S06 Lec16 Review 56

Limits to ILP
• Most techniques for increasing performance increase power

consumption
• The key question is whether a technique is energy efficient:

does it increase power consumption faster than it increases
performance?

• Multiple issue processors techniques all are energy
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that

grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained

performance
• Number of transistors switching = f(peak issue rate), and

performance = f(sustained rate),
growing gap between peak and sustained performance
⇒ increasing energy per unit of performance

1/3/2007 CS252 S06 Lec16 Review 57

Limits to ILP
• Doubling issue rates above today’s 3-6

instructions per clock, say to 6 to 12 instructions,
probably requires a processor to

– Issue 3 or 4 data memory accesses per cycle,
– Resolve 2 or 3 branches per cycle,
– Rename and access more than 20 registers per cycle, and
– Fetch 12 to 24 instructions per cycle.

• Complexities of implementing these capabilities
likely means sacrifices in maximum clock rate

– E.g, widest issue processor is the Itanium 2, but it also has
the slowest clock rate, despite the fact that it consumes the
most power!

1/3/2007 CS252 S06 Lec16 Review 58

Limits to ILP

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known
& a load can be moved before a store provided
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions
(FP *,/); unlimited instructions issued/clock cycle;

1/3/2007 CS252 S06 Lec16 Review 59

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect v. Stack
v. Inspect v.
none

TournamentPerfect8K 2-bit

48 integer +
40 Fl. Pt.

Infinite256 Int + 256 FP

Power 5ModelNew Model

Limits to ILP HW Model comparison

1/3/2007 CS252 S06 Lec16 Review 60

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4 5 4 4
6 5

3
5

3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW:
Memory Address Alias Impact
Figure 3.6

Change 2048 instr
window, 64 instr
issue, 8K 2 level
Prediction, 256
renaming registers

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

1/3/2007 CS252 S06 Lec16 Review 61

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW: Window Impact
(Figure 3.7)

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

1/3/2007 CS252 S06 Lec16 Review 62

Vector Instruction Set Advantages

• Compact
– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in the same pattern as previous instructions
– access a contiguous block of memory (unit-stride load/store)
– access memory in a known pattern (strided load/store)

• Scalable
– can run same object code on more parallel pipelines or lanes

1/3/2007 CS252 S06 Lec16 Review 63

Vector Execution Time
• Time = f(vector length, data dependicies, struct. hazards)
• Initiation rate: rate that FU consumes vector elements

(= number of lanes; usually 1 or 2 on Cray T-90)
• Convoy: set of vector instructions that can begin

execution in same clock (no struct. or data hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n,

then they take approx. m x n clock cycles (ignores
overhead; good approximization for long vectors)

4 convoys, 1 lane, VL=64
=> 4 x 64 = 256 clocks
(or 4 clocks per result)

1: LV V1,Rx ;load vector X
2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y
3: ADDV V4,V2,V3 ;add
4: SV Ry,V4 ;store the result 1/3/2007 CS252 S06 Lec16 Review 64

MP and caches

• Caches contain all information on state of
cached memory blocks

• Snooping cache over shared medium for smaller
MP by invalidating other cached copies on write

• Sharing cached data ⇒ Coherence (values
returned by a read), Consistency (when a written
value will be returned by a read)

• Snooping and Directory Protocols similar; bus
makes snooping easier because of broadcast
(snooping => uniform memory access)

• Directory has extra data structure to keep track
of state of all cache blocks

• Distributing directory => scalable shared
address multiprocessor
=> Cache coherent, Non uniform memory access

1/3/2007 CS252 S06 Lec16 Review 65

Microprocessor Comparison

4331Instruction issues
/ clock / core

12513011079Power (W)
389206199379Die size (mm2)
276230233300Transistor count (M)
1.93.22.41.2Clock rate (GHz)

1.9 MB
shared

1MB/
core

1MB /
core

3 MB
sharedL2 per core/shared

64/32
12K
uops/16 64/6416/8L1 I/D in KB per core

SMTSMTNo
Fine-
grainedMultithreading

8668Peak instr. issues
/ chip

2228Cores
IBM Power 5Pentium DOpteronSUN T1Processor

1/3/2007 CS252 S06 Lec16 Review 66

Performance Relative to Pentium D

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

SPECIntRate SPECFPRate SPECJBB05 SPECWeb05 TPC-like

Pe
rfo

rm
an

ce
 re

la
tiv

e
to

 P
en

tiu
m

 D

+Power5 Opteron Sun T1

1/3/2007 CS252 S06 Lec16 Review 67

Performance/mm2,
Performance/Watt

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

SPECInt
Rate/

mm
2̂

SPECInt
Rate

/W
att

SPECFP
Rate

/m
m^2

SPECFP
Rate

/W
att

SPECJB
B05

/m
m

2̂
SPECJB

B05
/W

att
TP

C-C
/m

m
2̂

TPC-C
/W

att

Ef
fic

ie
nc

y
no

rm
al

iz
ed

 to
 P

en
tiu

m
 D

+Power5 Opteron Sun T1

