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Outline
• ILP
• Compiler techniques to increase ILP
• Loop Unrolling
• Static Branch Prediction
• Dynamic Branch Prediction
• Overcoming Data Hazards with Dynamic 

Scheduling
• (Start) Tomasulo Algorithm
• Conclusion
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Amdahl’s Law Paper
• Gene Amdahl, "Validity of the Single Processor Approach to 

Achieving Large-Scale Computing Capabilities", AFIPS 
Conference Proceedings, (30), pp. 483-485, 1967.

• How long is paper? 
• How much of it is Amdahl’s Law? 
• What other comments about parallelism besides 

Amdahl’s Law?
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Parallel Programmer Productivity
• Lorin Hochstein et al "Parallel Programmer Productivity: A Case Study 

of Novice Parallel Programmers." International Conference for High 
Performance Computing, Networking and Storage (SC'05). Nov. 2005

• What did they study?
• What is argument that novice parallel programmers 

are a good target for High Performance Computing?
• How can account for variability in talent between 

programmers?
• What programmers studied?
• What programming styles investigated? 
• How big multiprocessor?
• How measure quality?
• How measure cost?
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Parallel Programmer Productivity
• Lorin Hochstein et al "Parallel Programmer Productivity: A Case Study 

of Novice Parallel Programmers." International Conference for High 
Performance Computing, Networking and Storage (SC'05). Nov. 2005

• What hypotheses investigated?
• What were results?
• Assuming these results of programming productivity 

reflect the real world, what should architectures of 
the future do (or not do)?

• How would you redesign the experiment they did? 
• What other metrics would be important to capture?
• Role of Human Subject Experiments in Future of 

Computer Systems Evaluation? 
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CS 252 Administrivia

• Monday March 20 Quiz 5-8 PM 405 Soda
• Monday March 20 lecture – Q&A, problem sets with 

Archana
• Wednesday March 22 no class: project meetings in 

635 Soda
• Spring Break March 27 – March 31
• Chapter 5 Advanced Memory Hierarchy
• Chapter 6 Storage
• Interconnect Appendix
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High Level Message
• Everything is changing 
• Old conventional wisdom is out
• We DESPERATELY need a new architectural solution for 

microprocessors based on parallelism
– My focus  is “All purpose” computers vs. “single purpose”

computers
⇒ Each company gets to design one

• Need to create a “watering hole” to bring everyone 
together to quickly find that solution

– architects, language designers, application experts, numerical 
analysts, algorithm designers, programmers, …

1/3/2007 CS252 S06 Lec16 Review 8

Outline
• Part I: A New Agenda for Computer Architecture

– Old Conventional Wisdom  vs. New Conventional Wisdom
– New Metrics for Success
– Innovating at HW/SW interface without compilers
– New Classification for Architectures and Apps

• Part II: A “Watering Hole” for Parallel Systems
– Research Accelerator for Multiple Processors

• Conclusion
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• Old CW: Power is free, Transistors expensive
• New CW: “Power wall” Power expensive, Xtors free 

(Can put more on chip than can afford to turn on)
• Old: Multiplies are slow, Memory access is fast
• New: “Memory wall” Memory slow, multiplies fast

(200 clocks to DRAM memory, 4 clocks for FP multiply)
• Old : Increasing Instruction Level Parallelism via compilers, innovation 

(Out-of-order, speculation, VLIW, …)
• New CW: “ILP wall” diminishing returns on more ILP 
• New: Power Wall + Memory Wall + ILP Wall = Brick Wall

– Old CW: Uniprocessor performance 2X / 1.5 yrs
– New CW: Uniprocessor performance only 2X / 5 yrs?

Conventional Wisdom (CW) 
in Computer Architecture
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Uniprocessor Performance (SPECint)

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, 
Computer Architecture: A Quantitative 
Approach, 4th edition, 2006

⇒ Sea change in chip 
design: multiple “cores” or 
processors per chip

3X
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Sea Change in Chip Design
• Intel 4004 (1971): 4-bit processor,

2312 transistors, 0.4 MHz, 
10 micron PMOS, 11 mm2 chip 

• Processor is the new transistor?

• RISC II (1983): 32-bit, 5 stage 
pipeline, 40,760 transistors, 3 MHz, 
3 micron NMOS, 60 mm2 chip

• 125 mm2 chip, 0.065 micron CMOS 
= 2312 RISC II+FPU+Icache+Dcache

– RISC II shrinks to ≈ 0.02 mm2 at 65 nm
– Caches via DRAM or 1 transistor SRAM (www.t-ram.com) ?
– Proximity Communication via capacitive coupling at > 1 TB/s ?

(Ivan Sutherland @ Sun / Berkeley)
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Déjà vu all over again?
“… today’s processors … are nearing an impasse as technologies approach 

the speed of light..”
David Mitchell, The Transputer: The Time Is Now (1989)

• Transputer had bad timing (Uniprocessor performance↑)
⇒ Procrastination rewarded: 2X seq. perf. / 1.5 years

• “We are dedicating all of our future product development to multicore 
designs. … This is a sea change in computing”

Paul Otellini, President, Intel (2005) 
• All microprocessor companies switch to MP (2X CPUs / 2 yrs)

⇒ Procrastination penalized: 2X sequential perf. / 5 yrs

32442Threads/chip

4221Threads/Processor

8222Processors/chip

Sun/’05IBM/’04Intel/’06AMD/’05Manufacturer/Year
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• Old CW: Since cannot know future programs, find set 
of old programs to evaluate designs of computers for 
the future

– E.g., SPEC2006

• What about parallel codes? 
– Few available, tied to old models, languages, architectures, …

• New approach: Design computers of future for 
numerical methods important in future

• Claim: key methods for next decade are 7 dwarves (+  
a few), so design for them!

– Representative codes may vary over time, but these numerical 
methods will be important for > 10 years

21st Century Computer Architecture
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High-end simulation in the physical 
sciences = 7 numerical methods:

1. Structured Grids (including locally 
structured grids, e.g. Adaptive Mesh 
Refinement)

2. Unstructured Grids
3. Fast Fourier Transform
4. Dense Linear Algebra
5. Sparse Linear Algebra 
6. Particles
7. Monte Carlo

Well-defined targets from algorithmic, 
software, and architecture standpoint 

Phillip Colella’s “Seven dwarfs”

• If add 4 for embedded, 
covers all 41 EEMBC 
benchmarks

8. Search/Sort
9. Filter

10. Combinational logic
11. Finite State Machine

• Note: Data sizes (8 bit  to 32 
bit) and types (integer, 
character) differ, but 
algorithms the same 

Slide from “Defining Software 
Requirements for Scientific 
Computing”, Phillip Colella, 2004 
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• SPECfp
– 8 Structured grid

» 3 using Adaptive Mesh Refinement
– 2 Sparse linear algebra
– 2 Particle methods
– 5 TBD: Ray tracer, Speech Recognition, Quantum 

Chemistry, Lattice Quantum Chromodynamics 
(many kernels inside each benchmark?)

• SPECint
– 8 Finite State Machine
– 2 Sorting/Searching
– 2 Dense linear algebra (data type differs from dwarf)
– 1 TBD: 1 C compiler (many kernels?)

6/11 Dwarves Covers 24/30 SPEC
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21st Century Measures of Success
• Old CW: Don’t waste resources on accuracy, 

reliability
– Speed kills competition 
– Blame Microsoft for crashes

• New CW: SPUR is critical for future of IT
– Security
– Privacy
– Usability (cost of ownership)
– Reliability

• Success not limited to performance/cost 

“20th century vs. 21st century C&C: the SPUR manifesto,”
Communications of the ACM , 48:3, 2005.
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21st Century Code Generation

• Old CW: Takes a decade for compilers to introduce 
an architecture innovation

• New approach: “Auto-tuners” 1st run variations of 
program on computer to find best combinations of 
optimizations (blocking, padding, …) and algorithms, 
then produce C code to be compiled for that
computer

– E.g., PHiPAC (BLAS), Atlas (BLAS), 
Sparsity (Sparse linear algebra), Spiral (DSP), FFT-W

– Can achieve 10X over conventional compiler

• One Auto-tuner per dwarf?
– Exist for Dense Linear Algebra, Sparse Linear Algebra, Spectral
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Reference

Best: 4x2

Mflop/s

Mflop/s

Sparse Matrix – Search for Blocking
for finite element problem [Im, Yelick, Vuduc, 2005]
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Best Sparse Blocking for 8 Computers

• All possible column block sizes selected for 8 computers; How could 
compiler know?

IBM 
Power 3

Intel/HP 
Itanium 2

IBM Power 4, 
Intel/HP Itanium

Sun Ultra 2, 
Sun Ultra 3, 

AMD Opteron
Intel 

Pentium M8
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Operand Size and Type
Programmer should be able to specify data size, type 

independent of algorithm
• 1 bit (Boolean*)
• 8 bits (Integer, ASCII)
• 16 bits (Integer, DSP fixed pt, Unicode*)
• 32 bits (Integer, SP Fl. Pt., Unicode*)
• 64 bits (Integer, DP Fl. Pt.)
• 128 bits (Integer*, Quad Precision Fl. Pt.*)
• 1024 bits (Crypto*)
* Not supported well in most programming languages 

and optimizing compilers
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Style of Parallelism

Data Level Parallel
(Same operation

lots of data, 1 PC)

Programmer wants code to run on as many 
parallel architectures as possible so (if possible)

Architect wants to run as many different types 
of parallel programs as possible so

Simpler Programming model,,
Less HW Control

More Flexible, 
More HW Control

Inst. Level Parallel
(Different operations
lots of data, 1 PC)

Thread Level Parallel
(Different operations
lots of data, N PCs)

Separate 
address
spaces

Single 
address
space
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Parallel Framework – Apps (so far)
• Original 7 dwarves: 6 data parallel, 1 Sep. Addr.TLP
• Bonus 4 dwarves: 2 data parallel, 2 Separate Addr. TLP
• EEMBC (Embedded): DLP 19, 12 Separate Addr. TLP
• SPEC (Desktop): 14 DLP, 2 Separate Address TLP
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Most New 
Architectures

Most 
Important 
Apps?

DLP                                     DLP                                     ILPILP TLPTLP
Separate Separate 
AddressesAddresses

Shared Shared 
AddressAddress
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Amount of Explicit Parallelism
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Operand Size CryptoBoolean

• Given natural operand size and level of parallelism, how 
parallel is computer or how must parallelism available in 
application?

• Proposed Parallel Framework

More performance,
Better power efficiency

Easy for Programmer

Simpler Prog. model

More flexible
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Amount of Explicit Parallelism
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• Original 7 dwarves: 6 data parallel, 1 Sep. Addr.TLP
• Bonus 4 dwarves: 2 data parallel, 2 Separate Addr. TLP
• EEMBC (Embedded): DLP 19, 12 Separate Addr. TLP
• SPEC (Desktop): 14 DLP, 2 Separate Address TLP
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What Computer Architecture brings to Table
• Other fields often borrow ideas from architecture
• Quantitative Principles of Design

1. Take Advantage of Parallelism
2. Principle of Locality
3. Focus on the Common Case
4. Amdahl’s Law
5. The Processor Performance Equation

• Careful, quantitative comparisons
– Define, quantity, and summarize relative performance
– Define and quantity relative cost
– Define and quantity dependability
– Define and quantity power

• Culture of anticipating and exploiting advances in 
technology

• Culture of well-defined interfaces that are carefully 
implemented and thoroughly checked
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1) Taking Advantage of Parallelism
• Increasing throughput of server computer via 

multiple processors or multiple disks
• Detailed HW design

– Carry lookahead adders uses parallelism to speed up computing 
sums from linear to logarithmic in number of bits per operand

– Multiple memory banks searched in parallel in set-associative 
caches

• Pipelining: overlap instruction execution to reduce 
the total time to complete an instruction sequence.

– Not every instruction depends on immediate predecessor ⇒
executing instructions completely/partially in parallel possible

– Classic 5-stage pipeline: 
1) Instruction Fetch (Ifetch), 
2) Register Read (Reg), 
3) Execute (ALU), 
4) Data Memory Access (Dmem), 
5) Register Write (Reg)
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• Read After Write (RAW)
InstrJ tries to read operand before InstrI writes it

• Caused by a “Dependence” (in compiler 
nomenclature).  This hazard results from an actual 
need for communication.

Three Generic Data Hazards

I: add r1,r2,r3
J: sub r4,r1,r3

1/3/2007 CS252 S06 Lec16 Review 28

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from reuse of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and 
– Writes are always in stage 5

I: sub r4,r1,r3 
J: add r1,r2,r3
K: mul r6,r1,r7

Three Generic Data Hazards
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Three Generic Data Hazards

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the reuse of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because: 
– All instructions take 5 stages, and 
– Writes are always in stage 5

• Will see WAR and WAW in more complicated pipes

I: sub r1,r4,r3 
J: add r1,r2,r3
K: mul r6,r1,r7
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Try producing fast code for
a = b + c;
d = e – f;

assuming a, b, c, d ,e, and f in memory. 
Slow code:

LW Rb,b
LW Rc,c
ADD Ra,Rb,Rc
SW  a,Ra 
LW Re,e 
LW Rf,f
SUB Rd,Re,Rf
SW d,Rd

Software Scheduling to Avoid Load 
Hazards

Fast code:
LW Rb,b
LW Rc,c
LW Re,e 
ADD Ra,Rb,Rc
LW Rf,f
SW  a,Ra 
SUB Rd,Re,Rf
SW d,Rd

Compiler optimizes for performance.  Hardware checks for safety.
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2) The Principle of Locality

• The Principle of Locality:
– Program access a relatively small portion of the address space at 

any instant of time.

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will 

tend to be referenced again soon (e.g., loops, reuse)
– Spatial Locality (Locality in Space): If an item is referenced, items 

whose addresses are close by tend to be referenced soon 
(e.g., straight-line code, array access)

• Last 30 years, HW  relied on locality for memory perf.

P MEM$
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3) Focus on the Common Case
• Common sense guides computer design

– Since its engineering, common sense is valuable
• In making a design trade-off, favor the frequent 

case over the infrequent case
– E.g., Instruction fetch and decode unit used more frequently 

than multiplier, so optimize it 1st
– E.g., If database server has 50 disks / processor, storage 

dependability dominates system dependability, so optimize it 1st
• Frequent case is often simpler and can be done 

faster than the infrequent case
– E.g., overflow is rare when adding 2 numbers, so improve 

performance by optimizing more common case of no overflow 
– May slow down overflow, but overall performance improved by 

optimizing for the normal case
• What is frequent case and how much performance 

improved by making case faster => Amdahl’s Law
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4) Amdahl’s Law

( )
enhanced

enhanced
enhanced

new

old
overall

Speedup
Fraction  Fraction 

1  
ExTime
ExTime Speedup

+−
==

1

Best you could ever hope to do:

( )enhanced
maximum Fraction - 1

1  Speedup =

( ) ⎥
⎦

⎤
⎢
⎣

⎡
+−×=

enhanced

enhanced
enhancedoldnew Speedup

FractionFraction ExTime  ExTime 1
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5) Processor performance equation

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds
Program Program          Instruction       Cycle

Inst Count CPI Clock Rate
Program X

Compiler X (X)

Inst. Set. X X

Organization X X

Technology X

inst count

CPI

Cycle time
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Latency Lags Bandwidth (last ~20 years)

• Performance Milestones
• Processor: ‘286, ‘386, ‘486, 

Pentium, Pentium Pro, 
Pentium 4 (21x,2250x)

• Ethernet: 10Mb, 100Mb, 
1000Mb, 10000 Mb/s (16x,1000x)

• Memory Module: 16bit plain 
DRAM, Page Mode DRAM, 32b, 
64b, SDRAM, 
DDR SDRAM (4x,120x)

• Disk : 3600, 5400, 7200, 10000, 
15000 RPM (8x, 143x)

1

10

100

1000

10000

1 10 100

Relative Latency Improvement 

Relative 
BW 

Improve
ment   

Processor

Memory

Network

Disk 

(Latency improvement 
= Bandwidth improvement)

CPU high, 
Memory low
(“Memory 
Wall”)
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Rule of Thumb for Latency Lagging BW

• In the time that bandwidth doubles, latency 
improves by no more than a factor of 1.2 to 1.4

(and capacity improves faster than bandwidth)

• Stated alternatively: 
Bandwidth improves by more than the square 
of the improvement in Latency
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Define and quantity power ( 1 / 2)
• For CMOS chips, traditional dominant energy 

consumption has been in switching transistors, 
called dynamic power

witchedFrequencySVoltageLoadCapacitivePowerdynamic ×××=
22/1

• For mobile devices, energy better metric
VoltageLoadCapacitiveEnergydynamic

2
×=

• For a fixed task, slowing clock rate (frequency 
switched) reduces power, but not energy

• Capacitive load a function of number of transistors 
connected to output and technology, which 
determines capacitance of wires and transistors

• Dropping voltage helps both, so went from 5V to 1V
• To save energy & dynamic power, most CPUs now 

turn off clock of inactive modules (e.g. Fl. Pt. Unit)
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Define and quantity power (2 / 2)
• Because leakage current flows even when a 

transistor is off, now static power important too

• Leakage current increases in processors with 
smaller transistor sizes

• Increasing the number of transistors increases 
power even if they are turned off

• In 2006, goal for leakage is 25% of total power 
consumption; high performance designs at 40%

• Very low power systems even gate voltage to 
inactive modules to control loss due to leakage

VoltageCurrentPower staticstatic ×=
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Define and quantity cost ICs

• For cost effective dies, cost ≈ f(die_area2) 

Test_Die  
Die_Area  2

Wafer_diam  
Die_Area

2m/2)(Wafer_dia  per wafer  Dies −
⋅

×−= ππ

α

α

−

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ×

+×=
Die_area sity Defect_Den 1  ld Wafer_yieYield Die

yield test Final
cost Packaging cost  Testing cost  Die cost  IC ++

=

yield Die per Wafer  Dies
costWafer  cost  Die
×

=
In 2006: α = 4,
12” (30 cm) wafer = $5k - $6k, 
Defect_Density = 0.4/cm2
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Define and quantity dependability
• Module reliability = measure of continuous service 

accomplishment (or time to failure).
2 metrics

1. Mean Time To Failure (MTTF) measures Reliability
2. Failures In Time (FIT) = 1/MTTF, the rate of failures 

• Traditionally reported as failures per billion hours of operation

• Mean Time To Repair (MTTR) measures Service 
Interruption
– Mean Time Between Failures (MTBF) = MTTF+MTTR

• Module availability measures service as alternate 
between the 2 states of accomplishment and 
interruption (number between 0 and 1, e.g. 0.9)

• Module availability = MTTF / ( MTTF + MTTR)
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Example calculating reliability
• If modules have exponentially distributed 

lifetimes (age of  module does not affect 
probability of failure), overall failure rate is the 
sum of failure rates of the modules

• Calculate FIT and MTTF for 10 disks (1M hour 
MTTF per disk), 1 disk controller (0.5M hour 
MTTF), and 1 power supply (0.2M hour MTTF):

hours
MTTF

FIT

eFailureRat

000,59
000,17/000,000,000,1

000,17
000,000,1/17

000,000,1/5210
000,200/1000,500/1)000,000,1/1(10

≈
=
=
=

++=
++×=
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How Summarize Suite Performance

• Since ratios, proper mean is geometric mean 
(SPECRatio unitless, so arithmetic mean meaningless)

n
n

i
iSPECRatioeanGeometricM ∏

=

=
1

1. Geometric mean of the ratios is the same as the 
ratio of the geometric means

2. Ratio of geometric means 
= Geometric mean of performance ratios 
⇒ choice of reference computer is irrelevant!

• These two points make geometric mean of ratios 
attractive to summarize performance
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How Summarize Suite Performance

• Does a single mean well summarize performance of 
programs in benchmark suite?

• Can decide if mean a good predictor by characterizing 
variability of distribution using standard deviation

• Like geometric mean, geometric standard deviation is 
multiplicative rather than arithmetic

• Can simply take the logarithm of SPECRatios, compute 
the standard mean and standard deviation, and then 
take the exponent to convert back:

( )

( )( )( )i

n

i
i

SPECRatioStDevtDevGeometricS

SPECRatio
n

eanGeometricM

lnexp

ln1exp
1

=

⎟
⎠

⎞
⎜
⎝

⎛
×= ∑

=
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Summary #1/3: 
The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

» workload
» use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B



1/3/2007 CS252 S06 Lec16 Review 45

Summary #2/3: Caches
• The Principle of Locality:

– Program access a relatively small portion of the address space at any 
instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.
– Capacity Misses: increase cache size
– Conflict Misses:  increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!
• Write Policy: Write Through vs. Write Back
• Today CPU time is a function  of (ops, cache misses) 

vs. just f(ops): affects Compilers, Data structures, and 
Algorithms
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Summary #3/3: TLB, Virtual Memory
• Page tables map virtual address to physical address
• TLBs are important for fast translation
• TLB misses are significant in processor performance

– funny times, as most systems can’t access all of 2nd level cache without 
TLB misses!

• Caches, TLBs, Virtual Memory all understood by examining how 
they deal with 4 questions: 
1) Where can block be placed?
2) How is block found? 
3) What block is replaced on miss? 
4) How are writes handled?

• Today VM allows many processes to share single memory 
without having to swap all processes to disk; today VM 
protection is more important than memory hierarchy benefits, 
but computers insecure
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Instruction-Level Parallelism (ILP)
• Basic Block (BB) ILP is quite small

– BB: a straight-line code sequence with no branches in 
except to the entry and no branches out except at the exit

– average dynamic branch frequency 15% to 25% 
=> 4 to 7 instructions execute between a pair of branches

– Plus instructions in BB likely to depend on each other
• To obtain substantial performance 

enhancements, we must exploit ILP across 
multiple basic blocks

• Simplest: loop-level parallelism to exploit 
parallelism among iterations of a loop. E.g.,

for (i=1; i<=1000; i=i+1)
x[i] = x[i] + y[i];

1/3/2007 CS252 S06 Lec16 Review 48

Loop-Level Parallelism
• Exploit loop-level parallelism to parallelism by 

“unrolling loop” either by 
1. dynamic via branch prediction or 
2. static via loop unrolling by compiler

(Another way is vectors, to be covered later)
• Determining instruction dependence is critical to 

Loop Level Parallelism
• If 2 instructions are

– parallel, they can execute simultaneously in a 
pipeline of arbitrary depth without causing any 
stalls (assuming no structural hazards)

– dependent, they are not parallel and must be 
executed in order, although they may often be 
partially overlapped



1/3/2007 CS252 S06 Lec16 Review 49

Dynamic Branch Prediction

• Performance = ƒ(accuracy, cost of misprediction)
• Branch History Table: Lower bits of PC address 

index table of 1-bit values
– Says whether or not branch taken last time
– No address check

• Problem: in a loop, 1-bit BHT will cause two 
mispredictions (avg is 9 iteratios before exit):

– End of loop case, when it exits instead of  looping as before
– First time through loop on next time through code, when it 

predicts exit instead of looping
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• Solution: 2-bit scheme where change prediction 
only if get misprediction twice

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process

Dynamic Branch Prediction

T

T NT

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
TakenT

NT
T

NT
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Why can Tomasulo overlap 
iterations of loops?

• Register renaming
– Multiple iterations use different physical destinations for 

registers (dynamic loop unrolling).

• Reservation stations 
– Permit instruction issue to advance past integer control flow 

operations
– Also buffer old values of registers - totally avoiding the WAR 

stall 

• Other perspective: Tomasulo building data 
flow dependency graph on the fly
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Tomasulo’s scheme offers 2 major 
advantages
1. Distribution of the hazard detection logic

– distributed reservation stations and the CDB
– If multiple instructions waiting on single result, & each 

instruction has other operand, then instructions can be 
released simultaneously by broadcast on CDB 

– If a centralized register file were used, the units would 
have to read their results from the registers when 
register buses are available

2. Elimination of stalls for WAW and WAR 
hazards
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Tomasulo Drawbacks

• Complexity
– delays of 360/91, MIPS 10000, Alpha 21264, 

IBM PPC 620 in CA:AQA 2/e, but not in silicon!

• Many associative stores (CDB) at high speed
• Performance limited by Common Data Bus

– Each CDB must go to multiple functional units 
⇒high capacitance, high wiring density

– Number of functional units that can complete per cycle 
limited to one!

» Multiple CDBs ⇒ more FU logic for parallel assoc stores

• Non-precise interrupts!
– We will address this later
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Tomasulo
• Reservations stations: renaming to larger set of 

registers + buffering source operands
– Prevents registers as bottleneck
– Avoids WAR, WAW hazards
– Allows loop unrolling in HW

• Not limited to basic blocks 
(integer units gets ahead, beyond branches)

• Helps cache misses as well
• Lasting Contributions

– Dynamic scheduling
– Register renaming
– Load/store disambiguation

• 360/91 descendants are Intel Pentium 4, IBM Power 5, 
AMD Athlon/Opteron, …
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ILP
• Leverage Implicit Parallelism for Performance: 

Instruction Level Parallelism
• Loop unrolling by compiler to increase ILP
• Branch prediction to increase ILP
• Dynamic HW exploiting ILP

– Works when can’t know dependence at compile time
– Can hide L1 cache misses
– Code for one machine runs well on another
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Limits to ILP
• Most techniques for increasing performance increase power 

consumption 
• The key question is whether a technique is energy efficient: 

does it increase power consumption faster than it increases 
performance? 

• Multiple issue processors techniques all are energy 
inefficient:
1. Issuing multiple instructions incurs some overhead in logic that

grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained 

performance
• Number of transistors switching = f(peak issue rate), and 

performance = f( sustained rate), 
growing gap between peak and sustained performance 
⇒ increasing energy per unit of performance
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Limits to ILP
• Doubling issue rates above today’s 3-6 

instructions per clock, say to 6 to 12 instructions, 
probably requires a processor to 

– Issue 3 or 4 data memory accesses per cycle, 
– Resolve 2 or 3 branches per cycle, 
– Rename and access more than 20 registers per cycle, and 
– Fetch 12 to 24 instructions per cycle. 

• Complexities of implementing these capabilities 
likely means sacrifices in maximum clock rate 

– E.g,  widest issue processor is the Itanium 2, but it also has 
the slowest clock rate, despite the fact that it consumes the 
most power!
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Limits to ILP

Initial HW Model here; MIPS compilers. 
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted 
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation 
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known 
& a load can be moved before a store provided 
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions 
(FP *,/); unlimited instructions issued/clock cycle; 
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64KI, 32KD, 1.92MB 
L2, 36 MB L3
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Limits to ILP HW Model comparison
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Vector Instruction Set Advantages

• Compact
– one short instruction encodes N operations

• Expressive, tells hardware that these N operations:
– are independent
– use the same functional unit
– access disjoint registers
– access registers in the same pattern as previous instructions
– access a contiguous block of memory (unit-stride load/store)
– access memory in a known pattern (strided load/store) 

• Scalable
– can run same object code on more parallel pipelines or lanes
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Vector Execution Time
• Time = f(vector length, data dependicies, struct. hazards) 
• Initiation rate: rate that FU consumes vector elements 

(= number of lanes; usually 1 or  2 on Cray T-90)
• Convoy: set of vector instructions that can begin 

execution in same clock (no struct. or data hazards)
• Chime: approx. time for a vector operation
• m convoys take m chimes; if each vector length is n, 

then they take approx. m x n clock cycles (ignores 
overhead; good approximization for long vectors)

4 convoys, 1 lane, VL=64
=> 4 x 64 = 256 clocks
(or 4 clocks per result)

1: LV     V1,Rx ;load vector X
2: MULV V2,F0,V1 ;vector-scalar mult.

LV V3,Ry ;load vector Y
3: ADDV V4,V2,V3 ;add
4: SV Ry,V4 ;store the result 1/3/2007 CS252 S06 Lec16 Review 64

MP and caches

• Caches contain all information on state of 
cached memory blocks 

• Snooping cache over shared medium for smaller 
MP by invalidating other cached copies on write

• Sharing cached data ⇒ Coherence (values 
returned by a read), Consistency (when a written 
value will be returned by a read)

• Snooping and Directory Protocols similar; bus 
makes snooping easier because of broadcast 
(snooping => uniform memory access)

• Directory has extra data structure to keep track 
of state of all cache blocks

• Distributing directory => scalable shared 
address multiprocessor 
=> Cache coherent, Non uniform memory access
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Microprocessor Comparison
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Performance Relative to Pentium D
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Performance/mm2, 
Performance/Watt
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