
EECS 252 Graduate Computer
Architecture

Lec 9 – Limits to ILP and
Simultaneous Multithreading

David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06

2/14/2006 CS252 S06 Lec9 Limits and SMT 2

Review from Last Time
• Interest in multiple-issue because wanted to improve

performance without affecting uniprocessor
programming model

• Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4, IBM Power 5,

AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
⇒ performance 8 to 16X

• Peak v. delivered performance gap increasing

2/14/2006 CS252 S06 Lec9 Limits and SMT 3

Outline
• Review
• Limits to ILP (another perspective)
• Administrivia
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading
• Power 4 vs. Power 5
• Head to Head: VLIW vs. Superscalar vs. SMT
• Commentary
• Conclusion

2/14/2006 CS252 S06 Lec9 Limits and SMT 4

Limits to ILP

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW
mechanisms to keep on processor
performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.

2/14/2006 CS252 S06 Lec9 Limits and SMT 5

Overcoming Limits

• Advances in compiler technology +
significantly new and different hardware
techniques may be able to overcome
limitations assumed in studies

• However, unlikely such advances when
coupled with realistic hardware will
overcome these limits in near future

2/14/2006 CS252 S06 Lec9 Limits and SMT 6

Limits to ILP

Initial HW Model here; MIPS compilers.
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known
& a load can be moved before a store provided
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions
(FP *,/); unlimited instructions issued/clock cycle;

2/14/2006 CS252 S06 Lec9 Limits and SMT 7

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectCache

2% to 6%
misprediction
(Tournament
Branch Predictor)

PerfectBranch Prediction

??PerfectMemory Alias
Analysis

4InfiniteInstructions Issued
per clock

200InfiniteInstruction Window
Size

48 integer +
40 Fl. Pt.

InfiniteRenaming
Registers

Power 5Model

Limits to ILP HW Model comparison

2/14/2006 CS252 S06 Lec9 Limits and SMT 8

Upper Limit to ILP: Ideal Machine
(Figure 3.1)

Programs

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

2/14/2006 CS252 S06 Lec9 Limits and SMT 9

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4InfiniteInfinite

200InfiniteInfinite, 2K, 512,
128, 32

??PerfectPerfect

2% to 6%
misprediction
(Tournament Branch
Predictor)

PerfectPerfect

48 integer +
40 Fl. Pt.

InfiniteInfinite

Power 5ModelNew Model

Limits to ILP HW Model comparison

2/14/2006 CS252 S06 Lec9 Limits and SMT 10

55
63

18

75

119

150

36 41

15

61 59 60

10 15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

100

120

140

160

gcc espresso li fpppp doduc tomcatv

In
st

ru
ct

io
ns

 P
er

 C
lo

ck

Inf inite 2048 512 128 32

More Realistic HW: Window Impact
Figure 3.2

Change from Infinite
window 2048, 512, 128, 32 FP: 9 - 150

Integer: 8 - 63

IP
C

2/14/2006 CS252 S06 Lec9 Limits and SMT 11

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

??PerfectPerfect

2% to 6%
misprediction
(Tournament Branch
Predictor)

PerfectPerfect vs. 8K
Tournament vs.
512 2-bit vs.
profile vs. none

48 integer +
40 Fl. Pt.

InfiniteInfinite

Power 5ModelNew Model

Limits to ILP HW Model comparison

2/14/2006 CS252 S06 Lec9 Limits and SMT 12

35

41

16

61
58

60

9

12
10

48

15

6
7 6

46

13

45

6 6 7

45

14

45

2 2 2

29

4

19

46

0

10

20

30

40

50

60

gcc espresso li fpppp doducd tomcatv

Program

Perfect Selective predictor Standard 2-bit Static None

More Realistic HW: Branch Impact
Figure 3.3

Change from Infinite
window to examine to
2048 and maximum
issue of 64 instructions
per clock cycle

ProfileBHT (512)TournamentPerfect No prediction

FP: 15 - 45

Integer: 6 - 12
IP

C

2/14/2006 CS252 S06 Lec9 Limits and SMT 13

Misprediction Rates

1%

5%

14%
12%

14%
12%

1%

16%
18%

23%

18%

30%

0%
3% 2% 2%

4%
6%

0%

5%

10%

15%

20%

25%

30%

35%

tomcatv doduc fpppp li espresso gcc

M
is

pr
ed

ic
tio

n
R

at
e

Profile-based 2-bit counter Tournament

2/14/2006 CS252 S06 Lec9 Limits and SMT 14

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect

Tournament Branch
Predictor

Perfect8K 2-bit

48 integer +
40 Fl. Pt.

InfiniteInfinite v. 256,
128, 64, 32, none

Power 5ModelNew Model

Limits to ILP HW Model comparison

2/14/2006 CS252 S06 Lec9 Limits and SMT 15

11

15

12

29

54

10

15

12

49

16

10
13

12

35

15

44

9 10 11

20

11

28

5 5 6 5 5
7

4 4
5

4
5 5

59

45

0

10

20

30

40

50

60

70

gcc espresso li fpppp doducd tomcatv

Program

Infinite 256 128 64 32 None

More Realistic HW:
Renaming Register Impact (N int + N fp)
Figure 3.5

Change 2048 instr
window, 64 instr
issue, 8K 2 level
Prediction

64 None256Infinite 32128

Integer: 5 - 15

FP: 11 - 45

IP
C

2/14/2006 CS252 S06 Lec9 Limits and SMT 16

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64

200Infinite2048

PerfectPerfectPerfect v. Stack
v. Inspect v.
none

TournamentPerfect8K 2-bit

48 integer +
40 Fl. Pt.

Infinite256 Int + 256 FP

Power 5ModelNew Model

Limits to ILP HW Model comparison

2/14/2006 CS252 S06 Lec9 Limits and SMT 17

Program

0

5

10

15

20

25

30

35

40

45

50

gcc espresso li fpppp doducd tomcatv

10

15

12

49

16

45

7 7
9

49

16

4 5 4 4
6 5

3
5

3 3 4 4

45

Perfect Global/stack Perfect Inspection None

More Realistic HW:
Memory Address Alias Impact
Figure 3.6

Change 2048 instr
window, 64 instr
issue, 8K 2 level
Prediction, 256
renaming registers

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.

FP: 4 - 45
(Fortran,
no heap)

Integer: 4 - 9

IP
C

2/14/2006 CS252 S06 Lec9 Limits and SMT 18

64KI, 32KD, 1.92MB
L2, 36 MB L3

PerfectPerfectCache

Memory
Alias

Branch
Prediction

Renaming
Registers

Instruction
Window Size

Instructions
Issued per
clock

4Infinite64 (no
restrictions)

200InfiniteInfinite vs. 256,
128, 64, 32

PerfectPerfectHW
disambiguation

TournamentPerfect1K 2-bit

48 integer +
40 Fl. Pt.

Infinite64 Int + 64 FP

Power 5ModelNew Model

Limits to ILP HW Model comparison

2/14/2006 CS252 S06 Lec9 Limits and SMT 19

Program

0

10

20

30

40

50

60

gcc expresso li fpppp doducd tomcatv

10

15

12

52

17

56

10

15

12

47

16

10

13
11

35

15

34

9
10 11

22

12

8 8 9

14

9

14

6 6 6
8

7
9

4 4 4 5 4
6

3 2 3 3 3 3

45

22

Infinite 256 128 64 32 16 8 4

Realistic HW: Window Impact
(Figure 3.7)

Perfect disambiguation
(HW), 1K Selective
Prediction, 16 entry
return, 64 registers,
issue as many as
window

64 16256Infinite 32128 8 4

Integer: 6 - 12

FP: 8 - 45

IP
C

2/14/2006 CS252 S06 Lec9 Limits and SMT 20

CS 252 Administrivia
• 1 Page project writeups Due LAST Sunday
• 1st Homework Assignment due Friday

– Problems online

• Also Friday Reading Assignment: “Simultaneous
Multithreading: A Platform for Next-generation
Processors,” Susan J. Eggers et al, IEEE Micro,
1997

– Try 30 minute discussion after one hour lecture on Monday
– Send email to TA by Friday, will be posted on Saturday, review

before discussion on Monday

• What assumption made about computer
organization before add SMT? What performance
advantages claimed? For what workloads?

– How compare to Wall’s ILP limit claims?

2/14/2006 CS252 S06 Lec9 Limits and SMT 21

Outline
• Review
• Limits to ILP (another perspective)
• Administrivia
• Thread Level Parallelism
• Multithreading
• Simultaneous Multithreading
• Power 4 vs. Power 5
• Head to Head: VLIW vs. Superscalar vs. SMT
• Commentary
• Conclusion

2/14/2006 CS252 S06 Lec9 Limits and SMT 22

How to Exceed ILP Limits of this study?

• These are not laws of physics; just practical limits
for today, and perhaps overcome via research

• Compiler and ISA advances could change results
• WAR and WAW hazards through memory:

eliminated WAW and WAR hazards through
register renaming, but not in memory usage

– Can get conflicts via allocation of stack frames as a called
procedure reuses the memory addresses of a previous frame
on the stack

2/14/2006 CS252 S06 Lec9 Limits and SMT 23

HW v. SW to increase ILP

• Memory disambiguation: HW best
• Speculation:

– HW best when dynamic branch prediction
better than compile time prediction

– Exceptions easier for HW
– HW doesn’t need bookkeeping code or

compensation code
– Very complicated to get right

• Scheduling: SW can look ahead to
schedule better

• Compiler independence: does not require
new compiler, recompilation to run well

2/14/2006 CS252 S06 Lec9 Limits and SMT 24

Performance beyond single thread ILP

• There can be much higher natural
parallelism in some applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data
Level Parallelism

• Thread: process with own instructions and
data

– thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical
operations on data, and lots of data

2/14/2006 CS252 S06 Lec9 Limits and SMT 25

Thread Level Parallelism (TLP)
• ILP exploits implicit parallel operations

within a loop or straight-line code
segment

• TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

• Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many

programs
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to
exploit than ILP

2/14/2006 CS252 S06 Lec9 Limits and SMT 26

New Approach: Mulithreaded Execution
• Multithreading: multiple threads to share the

functional units of 1 processor via
overlapping

– processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process
switch ≈ 100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, another

thread can be executed (coarse grain)

2/14/2006 CS252 S06 Lec9 Limits and SMT 27

Fine-Grained Multithreading
• Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

• Usually done in a round-robin fashion, skipping
any stalled threads

• CPU must be able to switch threads every clock
• Advantage is it can hide both short and long

stalls, since instructions from other threads
executed when one thread stalls

• Disadvantage is it slows down execution of
individual threads, since a thread ready to
execute without stalls will be delayed by
instructions from other threads

• Used on Sun’s Niagara (will see later)

2/14/2006 CS252 S06 Lec9 Limits and SMT 28

Course-Grained Multithreading
• Switches threads only on costly stalls, such as L2

cache misses
• Advantages

– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly
stall

• Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs

– Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can
complete

• Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

For most apps, most execution units lie idle

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

For an 8-way
superscalar.

2/14/2006 CS252 S06 Lec9 Limits and SMT 30

Do both ILP and TLP?
• TLP and ILP exploit two different kinds of

parallel structure in a program
• Could a processor oriented at ILP to

exploit TLP?
– functional units are often idle in data path designed for

ILP because of either stalls or dependences in the code

• Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

2/14/2006 CS252 S06 Lec9 Limits and SMT 32

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the
register sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

• Just adding a per thread renaming table and
keeping separate PCs

– Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”

2/14/2006 CS252 S06 Lec9 Limits and SMT 33

Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

2/14/2006 CS252 S06 Lec9 Limits and SMT 34

Design Challenges in SMT
• Since SMT makes sense only with fine-grained

implementation, impact of fine-grained scheduling
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor
single-thread performance?

– Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

Power 4Power 4

Power 5Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

Power 5 data flow ...

Why only 2 threads? With 4, one of the
shared resources (physical registers, cache,
memory bandwidth) would be prone to
bottleneck

Power 5 thread performance ...

Relative priority
of each thread
controllable in
hardware.

For balanced
operation, both
threads run
slower than if
they “owned”
the machine.

2/14/2006 CS252 S06 Lec9 Limits and SMT 39

Changes in Power 5 to support SMT
• Increased associativity of L1 instruction cache

and the instruction address translation buffers
• Added per thread load and store queues
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3

caches
• Added separate instruction prefetch and

buffering per thread
• Increased the number of virtual registers from

152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than the

Power4 core because of the addition of SMT
support

2/14/2006 CS252 S06 Lec9 Limits and SMT 40

Initial Performance of SMT
• Pentium 4 Extreme SMT yields 1.01 speedup for

SPECint_rate benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against a

vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC
benchmarks paired with every other (262 runs)
speed-ups from 0.90 to 1.58; average was 1.20

• Power 5, 8 processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains

2/14/2006 CS252 S06 Lec9 Limits and SMT 41

130
W

592 M
423
mm2

1.69 int.
2 FP

6/5/11Statically
scheduled
VLIW-style

Intel
Itanium 2

80W
(est.)

200 M
300
mm2

(est.)

1.96 int.
2 FP

8/4/8Speculative
dynamically

scheduled; SMT;
2 CPU cores/chip

IBM
Power5
(1 CPU
only)

104
W

114 M
115
mm2

2.86 int.
3 FP

3/3/4Speculative
dynamically
scheduled

AMD
Athlon 64

FX-57

115
W

125 M
122
mm2

3.87 int.
1 FP

3/3/4Speculative
dynamically

scheduled; deeply
pipelined; SMT

Intel
Pentium

4
Extreme

PowerTransis
-tors

Die size

Clock
Rate
(GHz)

FUFetch /
Issue /

Execute

Micro architectureProcessor

Head to Head ILP competition

2/14/2006 CS252 S06 Lec9 Limits and SMT 42

Performance on SPECint2000

0

5 0 0

10 0 0

15 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

gzip vpr gcc mcf craf t y parser eon per lbmk gap vort ex bzip2 t wolf

SP
EC

 R
at

io

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

2/14/2006 CS252 S06 Lec9 Limits and SMT 43

Performance on SPECfp2000

0

2000

4000

6000

8000

10000

12000

14000

w upw ise sw im mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

SP
EC

 R
at

io

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

2/14/2006 CS252 S06 Lec9 Limits and SMT 44

Normalized Performance: Efficiency

0

5

10

15

20

25

30

35

SPECInt / M
Transistors

SPECFP / M
Transistors

SPECInt /
mm^2

SPECFP /
mm^2

SPECInt /
Watt

SPECFP /
Watt

Itanium 2 Pentium 4 AMD Athlon 64 POWER 5

1342FP/Watt

2134Int/Watt

3124FP/area

3124Int/area

3124FP/Trans

3124Int/Trans

P
o
w
e
r
5

A
t
h
l
o
n

P
e
n
t
I
u
m
4

I
t
a
n
i
u
m
2Rank

2/14/2006 CS252 S06 Lec9 Limits and SMT 45

No Silver Bullet for ILP
• No obvious over all leader in performance
• The AMD Athlon leads on SPECInt performance

followed by the Pentium 4, Itanium 2, and Power5
• Itanium 2 and Power5, which perform similarly on

SPECFP, clearly dominate the Athlon and
Pentium 4 on SPECFP

• Itanium 2 is the most inefficient processor both
for Fl. Pt. and integer code for all but one
efficiency measure (SPECFP/Watt)

• Athlon and Pentium 4 both make good use of
transistors and area in terms of efficiency,

• IBM Power5 is the most effective user of energy
on SPECFP and essentially tied on SPECINT

2/14/2006 CS252 S06 Lec9 Limits and SMT 46

Limits to ILP
• Doubling issue rates above today’s 3-6

instructions per clock, say to 6 to 12 instructions,
probably requires a processor to

– issue 3 or 4 data memory accesses per cycle,
– resolve 2 or 3 branches per cycle,
– rename and access more than 20 registers per cycle, and
– fetch 12 to 24 instructions per cycle.

• The complexities of implementing these
capabilities is likely to mean sacrifices in the
maximum clock rate

– E.g, widest issue processor is the Itanium 2, but it also has
the slowest clock rate, despite the fact that it consumes the
most power!

2/14/2006 CS252 S06 Lec9 Limits and SMT 47

Limits to ILP
• Most techniques for increasing performance

increase power consumption
• The key question is whether a technique is energy

efficient: does it increase power consumption
faster than it increases performance?

• Multiple issue processors techniques all are
energy inefficient:
1. Issuing multiple instructions incurs some overhead in

logic that grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained

performance
• Number of transistors switching = f(peak issue

rate), and performance = f(sustained rate),
growing gap between peak and sustained
performance
⇒ increasing energy per unit of performance 2/14/2006 CS252 S06 Lec9 Limits and SMT 48

Commentary
• Itanium architecture does not represent a significant

breakthrough in scaling ILP or in avoiding the problems of
complexity and power consumption

• Instead of pursuing more ILP, architects are increasingly
focusing on TLP implemented with single-chip
multiprocessors

• In 2000, IBM announced the 1st commercial single-chip,
general-purpose multiprocessor, the Power4, which
contains 2 Power3 processors and an integrated L2 cache

– Since then, Sun Microsystems, AMD, and Intel have switch to a focus
on single-chip multiprocessors rather than more aggressive
uniprocessors.

• Right balance of ILP and TLP is unclear today
– Perhaps right choice for server market, which can exploit more TLP,

may differ from desktop, where single-thread performance may
continue to be a primary requirement

2/14/2006 CS252 S06 Lec9 Limits and SMT 49

And in conclusion …
• Limits to ILP (power efficiency, compilers,

dependencies …) seem to limit to 3 to 6 issue for
practical options

• Explicitly parallel (Data level parallelism or
Thread level parallelism) is next step to
performance

• Coarse grain vs. Fine grained multihreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained
multithreading based on OOO superscalar
microarchitecture

– Instead of replicating registers, reuse rename registers
• Itanium/EPIC/VLIW is not a breakthrough in ILP
• Balance of ILP and TLP decided in marketplace

