
EECS 252 Graduate Computer 
Architecture

Lec 9 – Limits to ILP  and 
Simultaneous Multithreading

David Patterson
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~pattrsn
http://vlsi.cs.berkeley.edu/cs252-s06 

2/14/2006 CS252 S06 Lec9 Limits and SMT 2

Review from Last Time
• Interest in multiple-issue because wanted to improve 

performance without affecting uniprocessor 
programming model

• Taking advantage of ILP is conceptually simple, but 
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4, IBM Power 5, 

AMD Opteron) have the same basic structure and 
similar sustained issue rates (3 to 4 instructions per 
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many 
renaming registers, and 2X as many load-store units
⇒ performance 8 to 16X

• Peak v. delivered performance gap increasing
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Limits to ILP

• Conflicting studies of amount
– Benchmarks (vectorized Fortran FP vs. integer C programs)
– Hardware sophistication
– Compiler sophistication

• How much ILP is available using existing 
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW 
mechanisms to keep on processor 
performance curve?

– Intel MMX, SSE (Streaming SIMD Extensions): 64 bit ints
– Intel SSE2: 128 bit, including 2 64-bit Fl. Pt. per clock
– Motorola AltaVec: 128 bit ints and FPs
– Supersparc Multimedia ops, etc.
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Overcoming Limits

• Advances in compiler technology + 
significantly new and different hardware 
techniques may be able to overcome 
limitations assumed in studies

• However, unlikely such advances when 
coupled with realistic hardware will 
overcome these limits in near future 
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Limits to ILP

Initial HW Model here; MIPS compilers. 
Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided
2. Branch prediction – perfect; no mispredictions
3. Jump prediction – all jumps perfectly predicted 
(returns, case statements)
2 & 3 ⇒ no control dependencies; perfect speculation 
& an unbounded buffer of instructions available
4. Memory-address alias analysis – addresses known 
& a load can be moved before a store provided 
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions 
(FP *,/); unlimited instructions issued/clock cycle; 

2/14/2006 CS252 S06 Lec9 Limits and SMT 7

64KI, 32KD, 1.92MB 
L2, 36 MB L3

PerfectCache

2% to 6% 
misprediction
(Tournament 
Branch Predictor)

PerfectBranch Prediction

??PerfectMemory Alias 
Analysis

4InfiniteInstructions Issued 
per clock

200InfiniteInstruction Window 
Size

48 integer + 
40 Fl. Pt.

InfiniteRenaming 
Registers

Power 5Model

Limits to ILP HW Model comparison

2/14/2006 CS252 S06 Lec9 Limits and SMT 8

Upper Limit to ILP: Ideal Machine
(Figure 3.1)
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CS 252 Administrivia
• 1 Page project writeups Due LAST Sunday
• 1st Homework Assignment due Friday

– Problems online

• Also Friday Reading Assignment: “Simultaneous 
Multithreading: A Platform for Next-generation 
Processors,” Susan J. Eggers et al, IEEE Micro, 
1997

– Try 30 minute discussion after one hour lecture on Monday
– Send email to TA by Friday, will be posted on Saturday, review 

before discussion on Monday

• What assumption made about computer 
organization before add SMT? What performance 
advantages claimed? For what workloads?  

– How compare to Wall’s ILP limit claims?
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How to Exceed ILP Limits of this study?

• These are not laws of physics; just practical limits 
for today, and perhaps overcome via research

• Compiler and ISA advances could change results
• WAR and WAW hazards through memory: 

eliminated WAW and WAR hazards through 
register renaming, but not in memory usage

– Can get conflicts via allocation of stack frames as a called 
procedure reuses the memory addresses of a previous frame 
on the stack

2/14/2006 CS252 S06 Lec9 Limits and SMT 23

HW v. SW to increase ILP

• Memory disambiguation: HW best
• Speculation: 

– HW best when dynamic branch prediction 
better than compile time prediction

– Exceptions easier for HW
– HW doesn’t need bookkeeping code or 

compensation code
– Very complicated to get right

• Scheduling: SW can look ahead to 
schedule better

• Compiler independence: does not require 
new compiler, recompilation to run well
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Performance beyond single thread ILP

• There can be much higher natural 
parallelism in some applications 
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data 
Level Parallelism

• Thread: process with own instructions and 
data

– thread may be a process part of a parallel program of 
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC, 
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical 
operations on data, and lots of data
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Thread Level Parallelism (TLP)
• ILP exploits implicit parallel operations 

within a loop or straight-line code 
segment

• TLP explicitly represented by the use of 
multiple threads of execution that are 
inherently parallel

• Goal: Use multiple instruction streams to 
improve 
1. Throughput of computers that run many 

programs 
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to 
exploit than ILP
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New Approach: Mulithreaded Execution
• Multithreading: multiple threads to share the 

functional units of 1 processor via 
overlapping

– processor must duplicate independent state of each thread 
e.g., a separate copy of register file, a separate PC, and for 
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms, 
which already support multiple processes

– HW for fast thread switch; much faster than full process 
switch ≈ 100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, another 

thread can be executed (coarse grain)
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Fine-Grained Multithreading
• Switches between threads on each instruction, 

causing the execution of multiples threads to be 
interleaved 

• Usually done in a round-robin fashion, skipping 
any stalled threads

• CPU must be able to switch threads every clock
• Advantage is it can hide both short and long 

stalls, since instructions from other threads 
executed when one thread stalls 

• Disadvantage is it slows down execution of 
individual threads, since a thread ready to 
execute without stalls will be delayed by 
instructions from other threads

• Used on Sun’s Niagara (will see later)
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Course-Grained Multithreading
• Switches threads only on costly stalls, such as L2 

cache misses
• Advantages 

– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other 

threads issued only when the thread encounters a costly 
stall

• Disadvantage is hard to overcome throughput 
losses from shorter stalls, due to pipeline start-up 
costs

– Since CPU issues instructions from 1 thread, when a stall 
occurs, the pipeline must be emptied or frozen 

– New thread must fill pipeline before instructions can 
complete 

• Because of this start-up overhead, coarse-grained 
multithreading is better for reducing penalty of 
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400



For most apps, most execution units lie idle

From: Tullsen, 
Eggers, and Levy,
“Simultaneous 
Multithreading: 
Maximizing On-chip 
Parallelism, ISCA 
1995.

For an 8-way 
superscalar.
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Do both ILP and TLP?
• TLP and ILP exploit two different kinds of 

parallel structure in a program 
• Could a processor oriented at ILP to 

exploit TLP?
– functional units are often idle in data path designed for 

ILP because of either stalls or dependences in the code 

• Could the TLP be used as a source of 
independent instructions that might keep 
the processor busy during stalls? 

• Could TLP be used to employ the 
functional units that would otherwise lie 
idle when insufficient ILP exists?

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

2/14/2006 CS252 S06 Lec9 Limits and SMT 32

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that 
dynamically scheduled processor already has 
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the 
register sets of independent threads 

– Register renaming provides unique register identifiers, so 
instructions from multiple threads can be mixed in datapath 
without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of 
order, and get better utilization of the HW 

• Just adding a per thread renaming table and 
keeping separate PCs

– Independent commitment can be supported by logically 
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”
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Design Challenges in SMT
• Since SMT makes sense only with fine-grained 

implementation, impact of fine-grained scheduling 
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor 
single-thread performance? 

– Unfortunately, with a preferred thread, the processor is likely to 
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in 

– Instruction issue - more candidate instructions need to be 
considered

– Instruction completion - choosing which instructions to commit 
may be challenging

• Ensuring that cache and TLB conflicts generated 
by SMT do not degrade performance

Power 4

Single-threaded predecessor to 
Power 5.  8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

Power 4Power 4

Power 5Power 5

2 fetch (PC),
2 initial decodes

2 commits 
(architected 
register sets)



Power 5 data flow ...

Why only 2 threads? With 4, one of the 
shared resources (physical registers, cache, 
memory bandwidth) would be prone to 
bottleneck 

Power 5 thread performance ...

Relative priority 
of each thread 
controllable in 
hardware.

For balanced 
operation, both 
threads run 
slower than if 
they “owned”
the machine.
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Changes in  Power 5 to support SMT
• Increased associativity of L1 instruction cache 

and the instruction address translation buffers 
• Added per thread load and store queues 
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3 

caches
• Added separate instruction prefetch and 

buffering per thread
• Increased the number of virtual registers from 

152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than the 

Power4 core because of the addition of SMT 
support
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Initial Performance of SMT
• Pentium 4 Extreme SMT yields 1.01 speedup for 

SPECint_rate benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against a 

vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC 
benchmarks paired with every other (262 runs) 
speed-ups from 0.90 to 1.58; average was 1.20

• Power 5, 8 processor server 1.23 faster for 
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup 
between 0.89 and 1.41

– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains
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Performance on SPECfp2000
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Normalized Performance: Efficiency
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No Silver Bullet for ILP 
• No obvious over all leader in performance
• The AMD Athlon leads on SPECInt performance 

followed by the Pentium 4, Itanium 2, and Power5
• Itanium 2 and Power5, which perform similarly on 

SPECFP, clearly dominate the Athlon and 
Pentium 4 on SPECFP

• Itanium 2 is the most inefficient processor both 
for Fl. Pt. and integer code for all but one 
efficiency measure (SPECFP/Watt)

• Athlon and Pentium 4 both make good use of 
transistors and area in terms of efficiency, 

• IBM Power5 is the most effective user of energy 
on SPECFP and essentially tied on SPECINT
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Limits to ILP
• Doubling issue rates above today’s 3-6 

instructions per clock, say to 6 to 12 instructions, 
probably requires a processor to 

– issue 3 or 4 data memory accesses per cycle, 
– resolve 2 or 3 branches per cycle, 
– rename and access more than 20 registers per cycle, and 
– fetch 12 to 24 instructions per cycle. 

• The complexities of implementing these 
capabilities is likely to mean sacrifices in the 
maximum clock rate 

– E.g,  widest issue processor is the Itanium 2, but it also has 
the slowest clock rate, despite the fact that it consumes the 
most power!
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Limits to ILP
• Most techniques for increasing performance 

increase power consumption 
• The key question is whether a technique is energy 

efficient: does it increase power consumption 
faster than it increases performance? 

• Multiple issue processors techniques all are 
energy inefficient:
1. Issuing multiple instructions incurs some overhead in 

logic that grows faster than the issue rate grows
2. Growing gap between peak issue rates and sustained 

performance
• Number of transistors switching = f(peak issue 

rate), and performance = f( sustained rate), 
growing gap between peak and sustained 
performance 
⇒ increasing energy per unit of performance 2/14/2006 CS252 S06 Lec9 Limits and SMT 48

Commentary
• Itanium architecture does not represent a significant 

breakthrough in scaling ILP or in avoiding the problems of 
complexity and power consumption

• Instead of pursuing more ILP, architects are increasingly 
focusing on TLP implemented with single-chip 
multiprocessors 

• In 2000, IBM announced the 1st commercial single-chip, 
general-purpose multiprocessor, the Power4, which 
contains 2 Power3 processors and an integrated L2 cache 

– Since then, Sun Microsystems, AMD, and Intel have switch to a focus 
on single-chip multiprocessors rather than more aggressive 
uniprocessors.

• Right balance of ILP and TLP is unclear today
– Perhaps right choice for server market, which can exploit more TLP, 

may differ from desktop, where single-thread performance may 
continue to be a primary requirement
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And in conclusion …
• Limits to ILP (power efficiency, compilers, 

dependencies …) seem to limit to 3 to 6 issue for 
practical options

• Explicitly parallel (Data level parallelism or 
Thread level parallelism) is next step to 
performance

• Coarse grain vs. Fine grained multihreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained 
multithreading based on OOO superscalar 
microarchitecture

– Instead of replicating registers, reuse rename registers
• Itanium/EPIC/VLIW is not a breakthrough in ILP
• Balance of ILP and TLP decided in marketplace


