Annals Hist Comput (1987) 9:16-22

Design of the B 5000 System

WILLIAM LONERGAN
PAUL KING

Computing systems have conventionally been de-
signed via the ‘hardware’ route. Subsequent to
design, these systems have been handed over to
programming systems people for the development
of a programming package to facilitate the use of
the hardware. In contrast to this, the B 5000 sys-
tem was designed from the start as a total hard-
ware-software system. The assumption was made
that higher level programming languages, such
as ALGOL, should be used to the virtual exclusion
of machine language programming, and that the
system should largely be used to control its own
operation. A hardware-free notation was utilized
to design a processor with the desired word and
symbol manipulative capabilities. Subsequently
this model was translated into hardware specifi-
cations at which time cost constraints were con-
sidered.

Design Objectives

The fundamental design objective of the B 5000
system was the reduction of total problem through-
put time. A second major objective was facilita-
tion of changes both in programs and system con-
figurations. Toward these objectives the following
aspects of the total computer utilization problem
were considered:

Statement of problems in higher-level ma-
chine-independent languages; efficiency of com-
pilation of machine language; speed of compila-
tion of machine language; program debugging in
higher-level languages; problem set-up and load

“Design of the B 5000 System” was published in Data-
mation, Vol. 7, No. 5, May 1961, pages 28-32. It is reprinted
here with permission of DATAMATION' Magazine, copyright
by Technical Publishing Co., 1961—all rights reserved.

time; efficiency of system operation; ease of
maintaining and making changes in existing pro-
grams, and ease of reprogramming when changes
are made in a system configuration.

Design Criteria

Early in the design phase of the B 5000 systen
the following principles were established anc
adopted:

Program should be independent of its locatior
and unmodified as stored at object time; dat:
should be independent of its location; addressiny
of memory within a program should take advan
tage of contextual addressing schemes to reduc
redundancy; provisions should be made for th
generalized handling of indexing and subrou
tines; a full complement of logical, relational an
control operators should be provided to enable ef
ficient translation of higher-level source lan
guages such as ALGOL and COBOL; program syr
tax should permit an almost mechanica
translation from source languages into efficier
machine code; facilities should be provided to pes
mit the system to largely control its own oper:
tion; input-output operations should be divorce
from processing and should be handled by an oj
erating system; multi-programming and true pa:
allel processing (requires multiple processor:
should be facilitated, and changes in system co1
figuration (within certain broad limitations) shoul
not require reprogramming.

System Organization

The B 5000 system achieves its unique physic
and operational modularity through the use

16 -+ Annals of the History of Computing, Volume 9, Number 1, 1987

W. Lonergan & P. King

Design of the B 5000 System

MAGNETIC MEMORY
lor2 | "DRUMS PROCESSOR i
1
MEMORY
MAGNETIC-
11018 | e reeage MODULE
s Soc SN, PROCESSOR el
CARD ! MODULE
lor2 | READERS 2
23]
%
o)
tor2 | priv gs INP oF MODULE
or UT-
PRINTERS »e
Mo OUTPUT 25 / 4
\ *5"2) l—— | CHANNEL 1| —— Ew
a4e] ug
& MEMORY
CARD 5 28 [~
1| punce e cgE ﬂg MORULE
e INPUT- &
B OUTPUT
Z CHANNEL 2 S
MESSAGE T
1 | PRovies MODULE
INPUT-
OUTPUT MEMORY
1| PLOTTER CHANNEL 3 MODULE
7
INPUT- MEMORY
1 | KEYBOARD QUIPUT MODULE
NNE 8

Figure 1. Organization of the B 5000 System

electronic switches which function logically like
telephone crossbar switches. Figure 1 depicts the
basic organization of the system as well as show-
ing a maximum system.

Master Control Program

A master control program (MCP) will be provided
with the B 5000 system. It will be stored on a por-
tion of the magnetic drum. During normal oper-
ations, a small portion of the MCP will be con-
tained in core memory. This portion will handle
a large percentage of recurrent system opera-
tions, Other segments of the MCP will be called
In from the magnetic drum, from time to time, as
they are required to handle less frequently-oc-
curring events, or system situations. Whenever
the system is executing the master control pro-
gram, it is said to be in the Control State. All en-
tries to the Contro! State are made via ‘inter-
"upts.” A special operation is provided, which can
only be executed when the system is in the Con-
trol State, to permit control to return to the object

program it was executing at the time the ‘inter-
rupt’ occurred.

The following are a few typical occurrences
which cause an automatic ‘interrupt’ in the sys-
tem: An input-output channel is available, an in-
put-output operation has been completed or an in-
dexing operation was attempted which violated
the storage protection features built into the sys-
tem.

In addition to processing interrupt conditions,
the master control program handles fundamental
parts of the total system operation such as the
initiation of all input-output operations, tanking
of input-output areas when required, file control,
allocation of memory, scheduling of jobs (priority
ratings, system requirements of each object pro-
gram, and the present system configuration are
considered), maintenance of an operations log and
maintenance of a system description.

Operating Modes

The B 5000 can either operate with fixed-length
words or with variable-length fields. These two

Annals of the History of Computing, Volume 9, Number 1, 1987 - 17

W, Lonergan & P. King + Design of the B 5000 System

modes of operation are called the word mode and
the character mode. For certain operations, a pro-
cessor operating on words is most desirable and
for other operations, a variable field length mode
of operation is most desirable. By combining both
abilities in one processor, a processor can operate
in the mode most desirable for the operation at
hand. In a B 5000 system, it is even possible for
one processor to be operating in the word mode
and the other in the character mode.

When operating in the word mode, a standard
format for the data word is used as illustrated in
Figure 2.

Note that the standard word is an octal float-
ing point word. However, the mantissa is treated
as an integer rather than as a fraction (heretofore
the reverse has been common practice). This pro-
vides two benefits: first, an integer has the same
internal representation as its unnormalized float-
ing point correspondent; and, second, the range of
numbers that can be expressed, rather than being
from 8% to 8%, is 8" to 8 °!. The first feature
eliminates the need for fixed-to-floating point con-
version; integers and floating point numbers can
be mixed in arithmetic calculations. The second
expands the range where trouble with range is
most often encountered, namely, in numbers with
extremely large magnitude.

The flag serves a dual purpose. The function
of the flag depends on how the program refer-
ences the data word. If the data word is a single
variable and not an element of an array, the flag
identifies the word as being operand, that is, a
data word. If the word is an element of an array,
the flag may be used to identify this particular
element as an element of data which is not to be
processed by the normal program (for example, a
boundary point in mesh calculations).

When operating in the character mode, each
data word consists of eight alphanumeric char-
acters, as illustrated in Figure 3. Programs in the
character mode can address any character in a
word. Fields can start at any position in a word.
A processor in a single operation can operate on
fields of any length up to 63 characters long; op-
erations on fields of greater length can easily be

S| EXPO- |S
FE NENT [0 INTEGER PART
F—Flag (1 bit) SO—Sign of Operand (1 bit)

SE—Sign of Exponent Integer Part (39 bits)
(1 bit)

Exponent (6 bits)
Figure 2. Data Word—Word Mode

18 + Annals of the History of Computing, Volume 9, Number 1, 1987

programmed. For example, two 57 character fields
could be compared in a single operation.

There are two instances when the character
mode operates with words of the type used in the
word mode. Operations are provided in the char-
acter mode for converting numeric information in
the alphanumeric representation to the standard
word type of the word mode and vice versa. In
both of these instances, the length of the alpha-
numeric fields being converted to or from the word
mode type of word can be no greater than eight
characters long. Again, conversion of fields of
greater length can easily be programmed.

The purpose of the word mode is to provide the
advantages of high-speed parallel operations,
floating-point abilities, and the inherent infor-
mation density possible in a binary machine. In
the first case, it is economically feasible to pro-
vide parallel operations in a word machine; the
cost of parallel operations on variable length fields
would be prohibitive. In the last case, a given size
memory can contain over twenty percent more
numeric information if that information is ex-
pressed in binary rather than binary-coded deci-
mal, and over eighty percent more information
than can be expressed in six-bit alphanumeric
representation.

The purpose of the character mode is to provide
editing, scanning, comparison, and data manip-
ulative abilities (although addition and subtrac-
tion are also provided). The type of editing facil-
ities provided obviate the need for the artificial
“add-shift-extract-store” type of editing. For ex-
ample, operations are provided for generalized in-
sertion of editing symbols (such as blanks, deci-
mal points, floating dollar signs, etc.) and for the
substitution or suppression of any unwanted
characters. For those interested in the new area
of Information Processing Languages, the char-
acter mode is particularly well suited to list
structures.

Program Organization

Programs in the B 5000 are composed of strings
of syllables. A syllable is the basic unit of the
program and is twelve bits in length. The term
“syllable” is used rather than instruction to dis-
tinguish it from conventional single-address or
multi-address instructions. Each program word
contains four syllables and they are executed se-
quentially in a left-to-right order within the pro-
gram word, and sequentially by word. Branching
is allowed to any syllable within a word. Before

W. Lonergan & P. King + Design of the B 5000 System

First Second Third Fourth
Char- Char- Char- Char-
acter acter acter acter

Fifth Sixth Seventh Eighth
Char- Char- Char- Char-
acter acter acter acter

Figure 3. Data Word—Character Mode

delving into some of the details of the internal
operation of the B 5000 processor, it is necessary
to discuss stacks, Polish notation, and the Pro-
gram Reference Table.

The Stack

The internal organization of single-address com-
puters forces the wasting of both programming and
running time for the storage and recall of the in-
termediate results in the sequence of computa-
tion. The data must be placed into the proper reg-
isters and memory cells before the operation can
be executed, and their contents must often be
completely rearranged before the next operation
can be performed. Multi-address computers are
constructed to make the execution of a few se-
lected operations more efficient, but at the ex-
pense of building inefficiencies into all the rest.
Automatic programming aids attack this problem
indirectly: they relieve the programmer of the need
to laboriously code his way around machine de-
sign, but they still must provide object coding to
accomplish the storage and recall functions. In
brief, conventionally designed computers, with or
without automatic programming aids, require the
wasteful expenditure of programming effort,
memory capacity, and running time to overcome
the limitations of their internal organization.
The problem is attacked directly in the B 5000
by incorporation of a “pushdown” stack, which
completely eliminates the need for instructions
(coded or compiled) to store or recall intermediate
results.
In a B 5000 processor, the stack is composed of
a pair of registers, the A and B registers, and a
memory area. As operands are picked up by the
programs, they are placed in the A register. If the
A register already contains a word of informa-
tion, that word is transferred to the B register prior
to loading the operand into the A register. If the
register is also occupied by information, then
the word in B is stored in a memory area defined
by an address register S. Then the word in A can
be transferred to B and the operand brought into
the A register. The new word coming into the stack
as pushed down the information previously held

in the registers. As each pushdown occurs, the ad-
dress in the S register is automatically increased
by one. The information contained in the regis-
ters is the last information entered into the stack;
the stack operates on a “last in-first out” princi-
ple. As information is operated on in the stack,
operands are eliminated from the stack and re-
sults of operations are returned to the stack. As
information in the stack is used up by operations
being performed, it is possible to cause “pushups,”
i.e., a word is brought from the memory area ad-
dressed by the S register, and the address in the
S register is decreased by one.

To eliminate unnecessary pushdowns and
pushups, the A and B registers both have indi-
cators used for remembering whether the regis-
ters contain information or are empty. When an
operand is to be placed in the stack and either of
the registers is empty, no pushdown into memory
occurs. Also, when an operation leaves one or both
of the registers empty, no automatic pushup oc-
curs.

Polish Notation

The Polish logician, J. Lukasiewicz, developed a
notation which allows the writing of algebraic or
logical expressions which do not require grouping
symbols and operator precedence conventions. For
example, parentheses are necessary as grouping
symbols in the expression A(B + C) to convey the
desired interpretation of the expression. In the
expression A + B/C, the normal interpretation is
A + (B/C), rather than (A + B)/C, because of the
convention that the / operator is of higher prece-
dence than the + operator. The right-hand Polish
notation used in the B 5000 is based on placing
the operators to the right of their operands: A +
B becomes AB+ in Polish notation. A + B + C
can be written either as AB + C +, or as ABC +
+. In the expression ABC + +, the first + op-
erator says to add the operands B and C. The sec-
ond + operator says to add A to the sum of B
and C.

Returning to the first examples above, A(B X
C) can be written as BC + A X or ABC + X in
Polish. The second example is written as BC/A

Annals of the History of Computing, Volume 9, Number 1, 1987 + 19

W. Lonergan & P. King + Design of the B 5000 System

+ or ABC/+. The extension of Polish notation to
handle equations is shown in the following ex-
ample:

Conventional notation Z = A(B — C)/(D + E)
Polish notation ABC — x DE +/Z=

The Stack In Use

To illustrate the functioning of the stack, two
simple examples are shown in Figures 4 and 5.
In the examples, the letters P, Q, and R represent
syllables in the program that cause the operands
P, Q, and R to be picked up and placed in the
stack. The symbols + and X represent syllables
that cause the add and multiply operations to oc-
cur. The two examples represent different ways
of writing P(Q + R) in Polish notation. The first
example in Figure 4 does not require pushdowns
or pushups. The second example, shown in Figure
5, requires a pushdown in the execution of the
syllable R, and a pushup in the execution of the
syllable X. The columns in the table represent the
contents of the various registers after execution
of the syllable listed in the first column.

Independence of Addressing

One of the goals set in the design of the B 5000
was to make the programs independent of the ac-
tual memory locations of both the program itself
and the data, in order to provide really automatic
program segmentation. Through automatic pro-
gram segmentation, it is possible to have pro-
gram size practically independent of the size of
core memory. The systems analyst or program-
mer intending to do multi-processing is then no
longer faced with the difficult task of planning

Polish Notation QR + P x

Contents of
Syllable
Executed Register A Register B
Q Q Empty
R R Q
+ Empty R+Q
P P R+Q
X Empty P(R + Q)

Figure 4.

20 + Annals of the History of Computing, Volume 9, Number 1, 1987

Polish Notation PQR+ x

Contents of
Syllable | Register | Register | Register | Cell
Executed A B S 101
24 P Empty 100
Q Q P 100 -
" Pushdown| Empty Q 101 P
Execute R Q 101 P
+ Empty Q+R 101 P |
Pushup | Q + R P 100 -
X
Execute | Empty |[P(Q + R)| 100 ;‘

Figure 5.

what jobs are to be run together in order that sys-
tem storage capacities are not exceeded.

In achieving independence of addressing, a so-
lution requiring large contiguous areas of mem-
ory was not deemed satisfactory. Each segment of
the program and each data area should be com-
pletely relocatable without modification to the
program. It is then possible to load all the seg-
ments of a program or programs onto the drum
at load time and call in the segments to any
available space in core memory as needed during
run time. If some segment of a program is over-
laid by a subsequent segment of a program, the
segment of the program destroyed in core mem-
ory is still available on the drum to be called in
again if needed.

Due to the very high program densities in the
B 5000, the availability of high capacity drum
storage on every system, and automatic segmen-
tation, a minimum B 5000 system has the capac-
ity for a program or programs equivalent to ap-
proximately 40,000 to 60,000 single address
instructions. Of course, if an installation nor-
mally ran such large programs, the system would
very likely not be a minimum system. However,
the installation having an occasional need to run
very large programs is not prevented from doin
so by storage capacity.

Processing speed now becomes a function of
size of core memory. If large programs are run i
a system with small core memory, time will
consumed in recalling program segments fro
drum to core. If the core memory is expanded, le
time will be spent in such activity and the p
gram or programs will be speeded up, and no
programming is required.

Lo (- . R G-

program Reference Table

The means of achieving independence of address-
ing in the B 5000 is called a Program Reference
Table (PRT). The PRT is a 1,024 word relocatable
area in memory used primarily for storing control
words that locate data areas or program seg-
ments. There are also control words for describing
input-output operations. These control words,
called descriptors, contain the base address and
gize of data areas, program segments, and input-
output areas. A descriptor specifying an input-
output operation also contains the designation of
the unit to be used and the type of operation to
be performed. Operands may also be stored in the
PRT, providing direct access to single values such
as indices, counts, control totals, etc.

In the word mode of the B 5000, every item of
data is considered to be either a single value or
an element of an array of data. If it is a single
value, it will be obtained directly from the PRT.
If it is an element of an array, it will be obtained
directly by indexing a descriptor contained in the
PRT.

Program segments are described by program
descriptors. In addition to core base address, the
program descriptor contains the location in drum
storage of the program segment and an indication
if the program segment is currently in core mem-
ory starting at the address specified in the de-
scriptor. Entry to a program segment is made via
its program descriptor contained in the PRT. If
the program segment is in core memory, entry will
be made to the program segment. However, when
entry is attempted to a program segment whose
descriptor indicates that the segment is not in core
memory, automatic entry to the Master Control
Program will occur and the desired segment will
then be brought in from the drum. Notice that in
moving from one segment to another, it is not
hecessary to know whether the segment to be en-
tered is currently in core memory. Branching
within a program segment is self-relative, i.e., the
distance to jump either forward or backward is
specified, not the address to be jumped to.

As a result of keeping all actual addresses of
data and program in the PRT, the program itself
does not contain any addresses, but only refer-
ences to the PRT. To specify one of the 1,024 po-
Sitions in the PRT requires only 10 bits which
contributes greatly to the high program density
achieved in the B 5000. Since the PRT is relo-
tatable, references to the PRT contained in the
Program are to relative locations, thus completely

W. Lonergan & P. King + Design of the B 5000 System

freeing the program from any dependence what-
soever on actual memory locations.

Word Mode Program

The word mode of the B 5000 processor has four
types of syllables. The syllable type is distin-
guished by the two high-order bits of each 12-bit
syllable. The types of syllable and the identifi-
cation bits are:

00 Operator Syllable

01 Literal Syllable

10 Operand Call Syllable
11 Descriptor Call Syllable

The first of these, the operator syllable, causes
operations to be performed. The remaining ten bits
of the operator syllable are the operation codes.
There are approximately sixty different opera-
tions in the word mode. For those operations re-
quiring an operand or operands, the processor
checks for sufficient operands in the registers; if
they are not there, pushups from the stack in
memory occur automatically.

The literal syllable is used for placing con-
stants in the stack to be used as operands. The
ten bits of the literal syllable are transferred to
the stack. This allows the program to contain in-
tegers less than 1024 as constants.

The operand call syllable, and the descriptor
call syllable address locations in the program ref-
erence table. The purpose of the operand call syl-
lable is to place an operand in the stack; the pur-
pose of the descriptor call syllable is to place the
address of an operand, a descriptor, in the stack.
There are four situations that arise, depending on
the word read from the program reference table:

1. The word is an operand.

2. The word is a descriptor containing the ad-
dress of the operand.

3. The word is a descriptor containing the base
address of the data area in which the operand
resides.

4. The word is a program descriptor containing
the base address of a subroutine.

For (1), the operand call syllable has completed
its action by placing an operand in the stack. The
descriptor call syllable will cause the construction
of a descriptor of the operand, replacing the op-
erand by the constructed descriptor.

Annals of the History of Computing, Volume 9, Number 1, 1987 + 21

W. Lonergan & P. King +« Design of the B 5000 System

For (2), the operand call syllable then reads the
operand from the cell addressed. The descriptor
call syllable has completed its action.

For (3), indexing of the descriptor by the item
that is now the second item in the stack occurs.
For an operand call syllable, the operand is ob-
tained from the indexed address; for the descrip-
tor call syllable, action is complete after the in-
dexing.

In the case of (4), subroutine entry occurs to
the subroutine addressed. A word of the three
previous types may be left in the registers upon
return from the subroutine, in which instance the
actions described above will take place, depend-
ing upon the type of syllable which initiated the
subroutine.

Essentially, the four types of action that occur
for an operand call syllable are obtaining an op-
erand directly, indirectly, from an array, or by
computation. Sometimes in the use of the call syl-
lables, it is not known which type of action will
occur for a particular syllable when the program
is created. This is particularly true for call syl-
lables in subroutines.

Programs in the word mode consist of strings
of syllables which follow the rules of Polish no-
tation. Variable length strings of call syllables and
literal syllables, which place items of information
in the stack, are followed by operator syllables
which perform their operations on information in
the stack.

The indexing features of the B 5000 allow gen-
eralized indexing and at the same time provide
complete storage protection. Data areas and pro-
gram segments of different programs may be in-
termingled, but a program is prevented from stor-
ing outside of its data areas. The method of
indexing allows any of the 1,024 words of the pro-
gram reference table to be considered index reg-
isters. Multi-level indexing is provided, i.e., in-
dices of arrays can themselves be elements of
arrays.

The subroutine control provided in the B 5000
allows nesting of subroutines—even recursive
nesting (a subroutine is a subroutine of itself)—

22 -+ Annals of the History of Computing, Volume 9, Number 1, 1987

arbitrarily deep. Dynamic allocation of storage for
parameter lists and temporary working storage
simplify the use of subroutines. Storage is auto-
matically allocated and reallocated as required.

Character Mode Program

In the character mode of the B 5000 Processor,
there is only one type of syllable, called the op-
erator syllable. Program segments in the char-
acter mode are constructed of strings of these syl-
lables. The character mode is designed to provide
editing, formatting, comparison, and other forms
of data manipulation. In doing so, the processor
uses two areas of memory—the source and des-
tination areas. When a program switches from
word mode to character mode, two descriptors
containing the base addresses of these areas are
supplied. The source area or destination area may
be changed at any time during character mode so
that the program may act on several areas.

The character mode operator syllable is split
into two 6-bit parts; the last part specifies the op-
eration to be performed and the first part speci-
fies the number of times the operation is to be
performed. Operations are provided for the trans-
ferring, deletion, comparison, and insertion of
characters or bits. Also, there are operations which
allow the repetition of syllable strings. This is quite
useful for complex table look-up operations and
for editing information which contains repeated
patterns.

Conclusion

The Burroughs B 5000 system has been designed
as an integrated hardware-software package which
offers such benefits as savings in the memory space
required to store equivalent object programs; multi-
processing and parallel processing; and running,
identical programs on systems with different size
memories and different system configurations with
no loss in individual system efficiency.

	b5000-01.png
	b5000-02.png
	b5000-03.png
	b5000-04.png
	b5000-05.png
	b5000-06.png
	b5000-07.png

