Review from Last Time #1
Leverage Implicit Parallelism for Performance:
EECS 252 Graduate Computer Instruction Level Parallelism

Architecture Loop unrolling by compiler to increase ILP
Branch prediction to increase ILP
Dynamic HW exploiting ILP
LeC 8 - |nStrUCti0n Level Para"elism — Works when can’t know dependence at compile time

— Can hide L1 cache misses
— Code for one machine runs well on another

David Patterson
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://lwww.eecs.berkeley.edu/~pattrsn
http:/Ivisi.cs.berkeley.edu/cs252-s06
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Review from Last Time #2 Outline

Reservations stations: renaming to larger set of . ILP
registers + buffering source operands

— Prevents registers as bottleneck

* Speculation

— Avoids WAR, WAW hazards » Speculative Tomasulo Example
— Allows loop unrolling in HW * Memory Aliases
* Not limited to basic blocks * Exceptions

(integer units gets ahead, beyond branches)
Helps cache misses as well
Lasting Contributions

* VLIW
* Increasing instruction bandwidth
* Register Renaming vs. Reorder Buffer
— Dynamic scheduling Val Predicti
— Register renaming * Value Prediction
— Load/store disambiguation » Discussion about paper “Limits of ILP”

360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, ...
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Speculation to greater ILP

* Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct
— Speculation = fetch, issue, and execute instructions as if

branch predictions were always correct
— Dynamic scheduling = only fetches and issues
instructions

» Essentially a data flow execution model:
Operations execute as soon as their operands are
available
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Speculation to greater ILP

« 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks
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Adding Speculation to Tomasulo

» Must separate execution from allowing
instruction to finish or “commit”

* This additional step called instruction commit

* When an instruction is no longer speculative,
allow it to update the register file or memory

* Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

» This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated
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Reorder Buffer (ROB)

* In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
instructions will find result in the register file

» With speculation, the register file is not updated
until the instruction commits
— (we know definitively that the instruction should execute)

* Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

— ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

— ROB extends architectured registers like RS
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Reorder Buffer Entry

* [Each entry in the ROB contains four fields:

1. Instruction type
« abranch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation
or load, which has register destinations)
2. Destination

¢ Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value

¢ Value of instruction result until the instruction commits

4. Ready

¢ Indicates that instruction has completed execution, and the
value is ready
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Reorder Buffer operation

Holds instructions in FIFO order, exactly as issued

When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

— Tag results with ROB buffer number instead of reservation station
Instructions commit =>values at head of ROB placed in

registers | —
As a result, easy to undo Reorder
speculated instructions FP Buffer
on mispredicted branches Op
or on exceptions FP Regs
Commit path
|Res Stationd  |Res Stations|
|
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Recall: 4 Steps of Speculative Tomasulo
Algorithm

1.Issue—get instruction from FP Op Queue

If reservation station free, issue instr &
send operands (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)

Write on Common Data Bus to all awaiting FUs
; mark reservation station available.

4. Commit
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CS 252 Administrivia

1 Page project writeups Due LAST Sunday
* Wednesday Reading Assignment: Chapter 3

» Friday Reading Assignment: Dean Tullsen, Susan
Eggers, and Hank Levy. “Simultaneous
Multithreading: Maximizing OnChip Parallelism.”
ISCA 22, June 1995

— Try 30 minute discussion after one hour lecture on Monday

— Send email to TA by Friday, will be posted on Saturday, review
before discussion on Monday

— Susan Eggers took CS252 here; just elected to National
Academy of Engineering.

* What assumption made about computer
organization before add SMT? How compare to
Wall’s claims of ILP limits? What changes made to
add SMT? What performance advantages claimed?
For what workloads?
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Tomasulo With Reorder buffer:

FP Op
Queue

Reorder Buffer

Registers

Dest

LD FO,10(R2)

Reservation 1 |10+R

Stations

211372006

Oldest

15

Tomasulo With Reorder buffer:

FP Op
Queue

Reorder Buffer

Registers

Dest

R(F4) ,ROB1

ADDD F10,F4,F0
LD FO,10(R2)

Reservation 1 |10+R

Stations

STLoI2000

Oldest

14

Tomasulo With Reorder buffer:

FP Op
Queue

Reorder Buffer

Registers

Dest

R(F4) ,ROB1

Reservation
Stations

F2 DIVD F2,F10,F6
ADDD F10,F4,F0
LD FO,10(R2)

To
| Memory
Dest from
= Memory
Dest *
1 J10+R

STLo2000

Oldest

15

Tomasulo With Reorder buffer:

FP Op
Queue

Reorder Buffer

Registers

Dest

2 JADDDR(F4) ,ROB1
ROBS. R(F6)

Reservation
Stations

FO ADDD FO,F4,F6 | N
F4 LD F4,0(R3) N
- BNE F2,<.> N
F2 DIVD F2,F10,F6 | N
ADDD F10,F4,FO0 | N
LD FO,10(R2) [N

To
| Memory

+ from
Des Memory

Dest *

110+

0|0

STLo000

Oldest

16




Tomasulo With Reorder buffer:

Done?

FP Op -] ROB5 [ST 0(R3),F4 N JIRoB7

Queue FO ADDD FO,F4,F6 | N |jRoBs
F4 LD F4,0(R3) N
- BNE F2,<.> N
Reorder Buffer F2 DIVD F2,F10,F6 [N
ADDD F10,F4,FO [N

LD FO,10(R2) N Jlrog1

Registers | To
Memory

Dest

Dest from
2 JADDD Eégg?.sggé) Memory
Des‘r*
Reservation 1 J10+R
Stations 21 O+R

Newest

Oldest

211372006

17

Tomasulo With Reorder buffer:

Done?

FP Op —- M[10] [ ST O0(R3),F4 Y JIroB7

Queue FO ADDD FO,F4,F6 | N ||RoBs
Fa| M[10] [ LD F4,0(R3) Y
— BNE F2,<.> N
Reorder Buffer F2 DIVD F2,F10,F6 | N
ADDD F10,F4,FO [N

LD FO,10(R2) N Jlroe1

Registers | To
Memory

Dest

Dest from
2 JADDDIR(F4) ,ROB1
MI10],R(F6) Memory
Dest *
Reservation 1 |10+R

Stations

Newest

Oldest

STLoI2000

15

Tomasulo With Reorder buffer:

Done?

FP Op -] M[10] | ST O(R3),F4 Y Jiroe7

Queue FO[<val2>| ADDD FO,F4,F6 |Ex|ROB6
Fa| M[10] [ LD F4,0(R3) Y
— BNE F2,<.> N
Reorder Buffer F2 DIVD F2,F10,F6 | N
ADDD F10,F4,FO | N

LD FO,10(R2) N Jlrog1

Registers | To
Memory

Dest
R(FAY.ROEL Dest from

Reservation
Stations

Newest

Oldest

STLo2000

19

Tomasulo With Reorder buffer:

Done?

FP Op --] M[10] [ ST 0(R3),F4 Y Jjroe7

Queue FO| <val2>[ ADDD FO,F4,F6 [Ex]roBe
74| MLTed | LD F4,0(R3) Y
__ ']NE F2,<.> N
Reorder Buffér F2 DIVQ F2,F10,F6 | N
ADDD W10,F4,FO0 [ N
What about memory N

hazards???
Registers

Dest Dest

R(F4) ,ROB1

Reservation
Stations

Newest

Oldest

STLo000

20




Avoiding Memory Hazards

« WAW and WAR hazards through memory are
eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

* RAW hazards through memory are maintained
by two restrictions:

1. not allowing a load to initiate the second step of its execution
if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.

» these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data
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Exceptions and Interrupts

* IBM 360/91 invented “imprecise interrupts”
— Computer stopped at this PC; its likely close to this address
— Not so popular with programmers
— Also, what about Virtual Memory? (Not in IBM 360)

» Technique for both precise interrupts/exceptions
and speculation: in-order completion and in-
order commit

— If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

— This is exactly same as need to do with precise exceptions
» Exceptions are handled by not recognizing the
exception until instruction that caused it is ready
to commit in ROB

— If a speculated instruction raises an exception, the exception
is recorded in the ROB

— This is why reorder buffers in all new processors
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Getting CPI below 1

* CPI 21 ifissue only 1 instruction every clock cycle

e Multiple-issue processors come in 3 flavors:
1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors
» 2 types of superscalar processors issue varying
numbers of instructions per clock
— use in-order execution if they are statically scheduled, or
— out-of-order execution if they are dynamically scheduled
 VLIW processors, in contrast, issue a fixed number
of instructions formatted either as one large
instruction or as a fixed instruction packet with the

parallelism among instructions explicitly indicated
by the instruction (Intel/HP Itanium)
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VLIW: Very Large Instruction Word

» Each “instruction” has explicit coding for multiple
operations
— In 1A-64, grouping called a “packet”
— In Transmeta, grouping called a “molecule” (with “atoms” as ops)

» Tradeoff instruction space for simple decoding
— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
— Need compiling technique that schedules across several branches
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Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: L.D FO,0(R1) L.D to ADD.D: 1 Cycle
2 L.D  F6,-8(R1) ADD.D to S.D: 2 Cycles
3 L.D  F10,-16(R1)

4 L.D  F14,-24(R1)

5 ADD.D F4,FO,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D  O(R1),F4

10 S.D  -8(R1),F8

1 S.D  -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ  R1,LOOP

14 S.D  8(R1),F16  ; 8-32 = -24

14 clock cycles, or 3.5 per iteration
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Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Cloc
reference 1 reference 2 operation 1 op.2 branch

k

L.D FO,0(R1)  L.D F6,-8(R1)

L.D F10,-16(R1) L. =

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,FO,F2  ADD.D F8,F6,F2

L.D F26,-48(R1) D F12,F10,F2 ADD.D F16,F14,F2
ADD.D F20,F18,F2 ADD.D F24,F22,F2

S.DO(R1),F4  S.D-8(R1),F8 ADD.D F28,F26,F2

S.D -16(R1),F12 S.D -24(R1),F16

S.D -32(R1),F20 S.D -40(R1),F24

S.D -0(R1),F28

DSUBUI R1,R1,#48
BNEZ R1,LOOP
Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)
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Problems with 1st Generation VLIW

* Increase in code size

— generating enough operations in a straight-line code fragment
requires ambitiously unrolling loops

— whenever VLIW instructions are not full, unused functional
units translate to wasted bits in instruction encoding
» Operated in lock-step; no hazard detection HW

— a stall in any functional unit pipeline caused entire processor
to stall, since all functional units must be kept synchronized

— Compiler might prediction function units, but caches hard to
predict

* Binary code compatibility

— Pure VLIW => different numbers of functional units and unit
latencies require different versions of the code
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Intel/HP 1A-64 “Explicitly Parallel
Instruction Computer (EPIC)”

* lA-64: instruction set architecture
» 128 64-bit integer regs + 128 82-bit floating point regs
— Not separate register files per functional unit as in old VLIW
» Hardware checks dependencies
(interlocks => binary compatibility over time)
* Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?
 Itanium™ was first implementation (2001)
— Highly parallel and deeply pipelined hardware at 800Mhz
— 6-wide, 10-stage pipeline at 800Mhz on 0.18 p process
e Itanium 2™ is name of 2nd implementation (2005)
— 6-wide, 8-stage pipeline at 1666Mhz on 0.13 p process
— Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3
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Increasing Instruction Fetch Bandwidth

Predicts next
instruct address,
sends it out

before decoding { P of msiructon o fech
instructuction Look up Predicied PC
PC of branch

sent to BTB Nomborof
entries

When match is in branch-

target

found, Predicted | buer
PC is returned

Branch Target Buffer (BTB)

If branch

predicted taken, No: instruction is A\l

o . = not predi 1o be Branch
|nstruct|on fetCh branch; proceed normally predictec
conti nues at Yas: then is branch and p Ularﬁ.;:;

PC should be used as the next PC

Predicted PC
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IF BW: Return Address Predictor

* Small buffer of
return addresses
acts as a stack

 Caches most
recent return
addresses

 Call = Push a
return address
on stack

* Return = Pop an
address off stack &
predict as new PC
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More Instruction Fetch Bandwidth

* Integrated branch prediction branch predictor is
part of instruction fetch unit and is constantly
predicting branches

¢ Instruction prefetch Instruction fetch units prefetch
to deliver multiple instruct. per clock, integrating it
with branch prediction

* Instruction memory access and buffering Fetching
multiple instructions per cycle:

— May require accessing multiple cache blocks
(prefetch to hide cost of crossing cache blocks)

—Provides buffering, acting as on-demand unit to
provide instructions to issue stage as needed
and in quantity needed
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Speculation: Register Renaming vs. ROB

» Alternative to ROB is a larger physical set of
registers combined with register renaming
— Extended registers replace function of both ROB and
reservation stations
* Instruction issue maps names of architectural
registers to physical register numbers in
extended register set

— On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

— Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

* Most Out-of-Order processors today use

extended registers with renaming
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Value Prediction

» Attempts to predict value produced by instruction
—E.g., Loads a value that changes infrequently

» Value prediction is useful only if it significantly
increases ILP

—Focus of research has been on loads; so-so
results, no processor uses value prediction

* Related topic is address aliasing prediction
— RAW for load and store or WAW for 2 stores

* Address alias prediction is both more stable and
simpler since need not actually predict the address
values, only whether such values conflict

—Has been used by a few processors
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(Mis) Speculation on Pentium 4
* % of micro-ops not used

430  45%

45% 139% —
40% -
35% -
30% -
25% -
20% -
RN BN B BN N

o 1R R A
50 - ° 1% 1% 0%
Q9% -

Integer I IFIoatIg Point
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Perspective

* Interest in multiple-issue because wanted to improve
performance without affecting uniprocessor
programming model

* Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

» Conservative in ideas, just faster clock and bigger

* Processors of last 5 years (Pentium 4, IBM Power 5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

— Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
= performance 8 to 16X

Peak v. delivered performance gap increasing
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In Conclusion ...

* Interrupts and Exceptions either interrupt the current
instruction or happen between instructions
— Possibly large quantities of state must be saved before interrupting
* Machines with precise exceptions provide one single
point in the program to restart execution
— All instructions before that point have completed
— No instructions after or including that point have completed
» Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!
— Important enabling factor for out-of-order execution
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CS 252 Administrivia

» 1 Page project writeups Due this Sunday

— students working on the RAMP project should go to 253 Cory or 387
Soda to update their cardkey access for 125 Cory

— RAMP Blue meeting today at 3:30 in 6t" floor Soda Alcove

» Reading Assignment: Chapter 2 today, Chapter 3 following
next Wednesday

— Try 30 minute discussion after one hour lecture (similar to ISA
discussion)

— Send email to TA by Friday, will be posted on Saturday, review before
discussion on Monday
» Paper: “Limits of instruction-level parallelism,” by David
Wall, Nov 1993
— Read pages 1-35 (> 'z of paper is figures)
— In your comments, rank in order of importance alias analysis, branch

prediction, jump prediction, register renaming, and speculative
execution

— In your comments, mention what are limits to this study of limits of ILP?
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Limits of ILP

« Paper: “Limits of instruction-level parallelism,”
by David Wall, Nov 1993

* This paper is a revision; did he think first version
painted a pessimistic or optimistic picture of ILP?

* What were defaults in number of instructions
issued per clock cycle, instruction window size,
execution latency, number of execution units?

* How did loop unrolling change results?

* How did realistic functional unit execution
latencies change results?
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Limits of ILP [2/2]

* Rank in order of importance alias analysis,
branch prediction, jump prediction, register
renaming, and speculative execution

* What are limits to this study of limits of ILP?

» What was his cautionary note at the end of the
memo about results?

» Paper was written in 1993:
—Which ideas still too optimistic in 20067
—Which ideas seem tame in 20067

» Did you learn much from this paper?
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