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Equalization
• Isolated pulse responses

– Pulse spreading
– Group delay variation

• Equalization
– Magnitude equalization
– Phase equalization
– The Comlinear CLC014 Equalizer
– Equalizer bandwidth and noise

• Bit error probabilities
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Isolated Pulse Responses
• Another way of looking at NRZ waveform degradation 

is to examine transmission line response to an 
isolated pulse

• For purely random binary data, the pattern
[0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0]
appears, on average, once in every 220 20b patterns
– That’s once every 20e6 bits
– The transmission line output to this pattern is shown on the 

following slide
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Isolated +1 Data Bit
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Isolated +1 Data Bit
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Isolated +1 Data Bit
• Pulse widths increase as the NRZ signal moves 

down the cable
– A common measure of pulse width is the Full Width at Half 

Maximum, or FWHM
– Isolated pulse width after 200m of cable is 2.2 bit periods are 

shown in the next slide

• They are a sure sign of group delay variation with 
frequency 
– If all frequency components receive the same delay, pulses 

can’t spread out
– Pulse widths of multiple bit periods obviously wreak havoc 

on eye diagrams and data recovery 
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Transmission Line Group Delay
• Cable transfer function:

• Group delay τGR ≡ -dθ(ω)/dω:
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Belden 8281 Cable Group Delay
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Transmission Line Group Delay
• Note that each 50m cable segment adds the same 

amount of group delay at each frequency
– Consider each 50m segment of cable as a filter
– Group delays of cable lengths in series add just like group 

delays for filters in series

• NRZ spectral density is constant below 108 Hz
– Increasing amounts of low frequency group delay are 

applied to decreasing amounts of signal energy
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Equalization
• Equalization is a pretty simple concept
• If the cable response is:

• A perfect equalizer built into the data receiver will have response:

• So that

( ) ( ) fjkL
C efH +−= 1

( ) ( ) fjkL
E efH ++= 1

1=ECHH
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Equalization

• In a world of perfect equalizers, we’d never 
need to worry about channel response
– The receiver’s equalizer output would match the 

signal transmitted into the cable

• In the real world, equalizers aren’t perfect
– Modeling their nonidealities is essential

• Let’s look at the significance of several 
equalizer nonidealities …
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Equalization

• Nonidealities to consider:
– Equalizer bandwidth limitations
– Imperfect gain equalization
– Imperfect phase equalization
– Noise

• Our tool of choice for evaluating equalizer 
effectiveness will be the eye diagram
– The eye diagram for the receiver input after 100m 

of Belden 8281 cable appears on the next slide …
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100m 8281 Cable Eye Diagram
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Ideal Equalization (#1)

e-af2
HE1(f) = e+kL√f e + jkL√f

magnitude phase
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Equalizer #1 Eye Diagram
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Gain Equalization (#2)
• In order to assess the relative importance of gain and 

phase equalization, we’ll look at the 100m eye 
diagram for a “perfect” magnitude equalizer which 
ignores phase completely
– Note that if you use a Parks-McClellan linear phase FIR gain 

equalizer, you ignore nonlinear phase completely 

• Equalizer #2:

e-af2
HE2(f) = e+kL√f
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Equalizer #2 Eye Diagram
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Phase Equalization (#3)
• Next, we’ll check out the 100m eye diagram for a 

perfect phase equalizer which ignores magnitude 
completely

• Note that the 100psec Gaussian response is still 
there to limit bandwidth

e-af2
HE3(f) = e + jkL√f
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Equalizer #3 Eye Diagram
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for the cable loss
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Equalizer #3 Eye Diagram
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Gain and Phase Equalization
• If anything, phase equalization alone produces better 

eye patterns than gain equalization alone

• Gain equalizers are high pass filters and produce 
spikey, high amplitude outputs
– Scale analog signals to avoid clipping

• Both gain and phase must be considered in channel 
equalization
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Equalizer #4
• In the real world, nobody can afford equalizer #1

– Reasonably robust approximations to the inverse of cable 
transfer functions can be built with surprisingly simple analog 
circuits

• Let’s see how Comlinear’s Alan Baker [1] built an 
analog domain equalizer (“equalizer #4”) using just 6 
analog poles …
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Equalizer #4

• While Comlinear’s approach seems to violate our 5-pole analog signal 
processing limit, Baker gets a waiver because he cascades two 
identical 3-pole stages

• Only one adjustable parameter is needed to equalize cable lengths 
from 0m-300m

• Each of the two identical stages compensates for 0-150m of cable loss
– Only one adjustable parameter is needed to equalize cable lengths from 

0m-300m
– Each of the two identical stages compensates for 0-150m of cable loss
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Equalizer #4 3-Pole Section

h1(s)=s/(s+p1) 0.21

h2(s)=s/(s+p2) 0.62

h3(s)=s/(s+p3) 12.1

Σ Σ
vOUTvIN

α

α= 0.19 for L=100m
α= 1.00 for L=300m

[ p1 p2  p3 ] = 2π [ 0.62MHz  14.1MHz  282MHz] 
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Equalizer #4 Eye Diagram
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Equalizer #4 Eye Diagram
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Equalizer #4

• While not approaching the ideal equalizer #1 
response, equalizer #4 demonstrates the eye 
quality you’ll see in real-world data receivers

• Let’s compare the equalizer #1 and #4 
responses in the frequency domain
– This provides an idea of how closely responses 

have to match for the observed eye quality
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100m Magnitude Responses 
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100m Magnitude Responses 
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Adaptive Equalization

• Now that we know something optimal 
equalization, how can a data receiver learn 
what equalization to apply?
– Cable lengths vary from 0-300m in the Comlinear 

application
– How does the CLC014 determine α?

• Adaptive equalization is a complex topic, with 
many different methods used in practice 
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Adaptive Equalization
• Equalizers may be trained at data link startup, or they 

may be continuously adaptive
– Cable lengths don’t change often, and service is interrupted 

when they do

• Adaptive analog methods include
– Mapping equalizer p-p input voltage to α (John Mayo’s 

method, [4])
– Finding the value of α that minimizes equalizer output jitter
– Finding the value of α that minimizes the difference between 

the decision circuit output and the equalizer output 
(Comlinear’s method)  
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Adaptive Equalization
• Adaptive digital methods include Decision Feedback 

Equalization and many others
– DFE builds adaptive digital FIR filters whose coefficients 

adjust to eliminate signal in bit periods N+1, N+2,… that’s 
correlated with the signal in bit period N

– Minimization of intersymbol interference leads to optimal 
equalization

• Digital-domain processing requires either a DAC or 
an ADC
– Excessive converter resolution can make DSP expensive or 

infeasible at high data rates
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Adaptive Equalization
• Analog-digital adaptive hybrids are usually found in 

IC data receivers
– Minimal analog-domain pre-equalization reduces ADC (or 

DAC) resolution and DSP datapath width (and digital power)
– Maximal digital-domain adaptive FIR equalizers finish the job

• 29%/yr DSP cost reduction leads to steady migration 
of equalization functions from the analog to digital 
domain
– In the limit, analog signal processing becomes a low Q 

antialiasing filter and an ADC 
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Equalizer Models
• Use equalizer behavioral models to understand

– Communication channel variations
– Analog equalizer component sensitivities
– Analog signal swings
– Adaptive equalization algorithms
– Digital datapath specifications (bit-true, cycle-true DSP 

models)

• Equalizers are filters, so there’s another important 
performance consideration
– NOISE
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Equalizer Noise

• For 300m cable lengths, the CLC014 
equalizer provides lots of high frequency gain 
to compensate for cable loss

• The 300m equalizer magnitude response 
appears on the following slide …
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Equalizer Noise
• Right at the input to the equalizer, there’s bound to 

be a thermal noise source with a transfer function to 
the equalizer output equal to the equalizer transfer 
function itself

• We’ll assume that this noise source is equivalent to 
that of a single 1kΩ resistor; that is, 4nV/√Hz

• The integrated noise at the equalizer #4 output 
appears on the next slide …
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Equalizer Noise
• 10mVrms noise is a lot of noise!

– Look at that noise on a scope and you’ll see 60mV of peak 
to peak noise

– Remember that this is the noise from just one 1kΩ source
– Real world circuits have lots of noise sources

• Can we reliably detect digital bits with signal to noise 
ratios of ≈40dB?
– Absolutely!
– Let’s find out why …

EECS 247 Lecture 26: Equalization © 2002 B. Boser   40A/D
DSP

Equalizer Noise
• Suppose that we have an eye opening at the equalizer output of 

2vOPEN

• Let’s also suppose that our timing recovery system samples the 
equalizer output at the point where the eye is opened the widest

2vOPEN
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Equalizer Noise
• If the instantaneous noise voltage is greater than +vOPEN when 

we’re trying to detect a –1, a bit error results

• If the instantaneous noise voltage is less than
–vOPEN when we’re trying to detect a +1, a bit error results

• To first order, the spectral distribution of the noise doesn’t matter
– Only the total integrated noise counts (it’s sampled!)

• If the noise is Gaussian, error probabilities are a well understood 
statistical problem …
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Bit Error Probabilities

• The bit error probability is [5]:

– erfc(x) is the complementary error function and vINT is the 
total rms integrated noise

• A plot of PE vs. vOPEN/vINT appears on the following 
slide …
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Bit Error Probability Plot
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Equalizer Noise
• Error probability is an extremely strong function of 

integrated noise 
– Integrated noise is a strong function of cable length and 

equalizer bandwidth

• Error probability is an extremely strong function of 
eye opening
– Eye opening is a strong function of equalization quality

• Lots of high sensitivities are a characteristic of data 
communication
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Equalizer Noise
• Before you start gloating over how easy it is to get a 

PE of 10-10, talk to an analog designer

• The analog designer tells you that
– A 1kΩ noise resistor is about 4X too low for a power-efficient 

equalizer (⇒ vINT>20mV)
– Signal-swings in continuous time equalizers built in low 

voltage CMOS should be <100mVp-p (⇒vOPEN<50mV) 
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Equalizer Noise
• This digital communications system is closer to 

practical IC design limits than one might think
– Future give-and-take sessions with the analog designer may 

pick up a dB or two of >100mV swings or <20mV noise
– Every dB counts in the PE business

• You resolve to apply one of the cardinal rules of 
analog design to your equalizer:
Never use more bandwidth than you really need
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Equalizer Noise
• Raising channel risetime from 500psec to 2nsec doesn’t change 

the equalized vOPEN much …

2vOPEN

tR=500psec

tR=2nsec
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Equalizer Noise

• Equalizer integrated noise grows linearly with 
bandwidth
– Excess bandwidth can limit your range

• Optimizing both signals and noise is the real 
art of equalization (or any other filtering)!

• We’ll examine the rest of the data recovery 
story next time …
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