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Digital Filters
• Advantages of digital filters

– Dynamic range
– No coefficient errors, aging
– Programmable
– Always work on first silicon if …

• FIR filters
– Linear phase
– Synthesis

• FIR / IIR comparison
• Implementation issues

– Coefficient rounding
– Intermediate result dynamic range
– Limit cycles
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Analog versus Digital DR
• It’s much less expensive to add dynamic range to 

digital circuits than analog circuits
• To double the dynamic range of a digital datapath, 

we need to add only a bit to an already-wide 
datapath:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
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+6dB DR
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Analog versus Digital DR
For comparison, consider summing the outputs of 4 
identical analog circuits with identical inputs:

A1 A2 A3 A4

Σ

vOUT

vIN
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Analog versus Digital DR
Analog noise is typically uncorrelated in each of the 
blocks A1-A4:

A1 A2 A3 A4

Σ

vOUT

vIN

Signal grows 4X
Noise grows 2X
+6dB Dynamic Range
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Analog versus Digital DR
• Doubling analog DR is very expensive:

– 4X the power
– 4X the area

• Doubling digital DR is relatively cheap,
– And cost/function decreases by 29%/year (3dB/year)!

• Practical circuits tolerate very little loss of DR due to 
finite datapath precision in their DSP sections
– Analog dynamic range is too precious to lose
– Digital DR loss of 5% (~ 0.4dB) of total noise power is typical

• Why use analog filters at all?
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ADC Dynamic Range

• The figure shows the DR of 
the best standalone ADCs 
in 2000

• Dynamic range decreases 
as converter bandwidth 
increases

• From 1975-1995, ADC 
performance at any 
sampling frequency 
improved by 2dB/year
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ADC Dynamic Range
• ADCs embedded in IC “Systems 

on a Chip” (SoCs) have less DR 
than the best standalone ADCs

• The embedded ADC performance 
level is shown in red

• Analog-digital crosstalk and 
design risk issues limit embedded 
ADC DR to about 100dB

• 1 GHz, 30dB DR levels are much 
more forgiving and the 
performance gap narrows ADC Sampling Frequency (Hz)

104 106 108

40

80

60

120

140

100

20
D

yn
am

ic
 R

an
ge

 (d
B

)

embedded ADCs

EECS 247 Lecture 11:  Digital Filters © 2002 B. Boser   8A/D
DSP

ADC Dynamic Range

• Minimization of analog 
signal processing is a key 
goal of mixed-signal IC 
architecture

• However, analog signal 
processing is almost 
unavoidable “above the 
red line”

ADC Sampling Frequency (Hz)
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Practical Constraints

• Only few ADC design teams in the world can produce 
“green line” dynamic range

• If your SoC architecture requires one of those teams 
to succeed, think again! 

• Mixed-signal SoC architectures fail when their 
architects choose to ignore long-established, 
empirically-proven performance scaling laws

EECS 247 Lecture 11:  Digital Filters © 2002 B. Boser   10A/D
DSP

FIR Filters
• Only finite zeros

• Linear phase if coefficients are symmetric

• Implement with delays, multipliers, adders

• Lack of good analog delays prevents widespread use 
of analog FIR filters

• Good synthesis tools (e.g. Remez-Exchange 
algorithm) 
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FIR Filter Phase Response

• Consider the Nth-order FIR filter with transfer 
function:

H(z) = a0 + a1z-1 + a2z-2 +…+ aN-2z2-N + aN-1z1-N + aNz-N

• Suppose the filter coefficients are symmetric 
about the middle term, i.e.:

H(z) = a0 + a1z-1 + a2z-2 +…+ a2z2-N + a1z1-N + a0z-N
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FIR Filter Phase Response

H(z) = a0 + a1z-1 + a2z-2 +…+ a2z2-N + a1z1-N + a0z-N

= a0 (1+z-N) + a1 (z-1+z1-N) + a2 (z-2 + z2-N) +…

= a0z-N/2(zN/2+z-N/2) + a1z-N/2 (z-1+N/2+z1-N/2) +

+ a2z-N/2 (z-2+N/2 + z2-N/2) +…

= z-N/2[ a0(zN/2+z-N/2) + a1(z-1+N/2+z1-N/2) + 

a2(z-2+N/2 + z2-N/2) +…]
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FIR Filter Phase Response
• The term in brackets [] is a sum of cosine 

terms with no phase shift:

H(ejωT) = e-jωNT/2 [ 2a0cos(ωNT/2) 
+ more real cos terms]

θ(ω) = - ωNT/2     τGR = NT/2

• The constant group delay of the symmetric 
coefficient FIR filter is obvious:

half the filter impulse response duration
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Coefficient Symmetry

• Three classes of zero 
groupings produce 
symmetric coefficients 
and linear phase

• The first is real axis 
zeroes at r and 1/r:

H(z) = z-2-(r+1/r)z-1+1
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Coefficient Symmetry

• Conjugate pairs of unit 
circle zeroes provide 
linear phase:

H(z) = z-2- 2z-1cos θ +1

θ
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Coefficient Symmetry

• Finally, groups of four 
zeroes at re±jθ and 
(1/r)e±jθ provide linear 
phase

• The filter coefficients for 
these 4 zeroes are: 

θ

1
-2(r+1/r)cosθ

4+r2+1/r2

-2(r+1/r)cosθ
1
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FIR Filter Phase Response

• Another interesting case involves 
antisymmetric filter coefficients:

• It’s easy to show that

H(z) = a0 + a1z-1 + a2z-2 +…- a2z2-N - a1z1-N - a0z-N

H(ejωT) = e-jωNT/2ejπ/2 [ 2a0sin(ωNT/2) 
+ more sin terms]
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FIR Filter Phase Response

• For the antisymmetric coefficient case

θ(ω) =      - ωNT/2     τGR = NT/2π
2

• It’s still linear phase, but with the frequency 
independent 90° phase shift characteristic of 
differentiators



EECS 247 Lecture 11:  Digital Filters © 2002 B. Boser   19A/D
DSP

Linear Phase FIR Example
fs = 1e6;
Fp = 0.10*fs;  Fs = 0.13*fs;
Rp = 0.1;      Rs = 60;
x = (10^(Rp/20)1)/(10^(Rp/20)+1); 
y = 10^(-Rs/20); 
[N,fo,ao,W]=remezord( …

[Fp Fs],[1 0],[x y],fs);
b = remez(N, fo, ao, W);
Hr = tf(b, 1, 1/fs);
Hr = Hr / 10^(rpass/40);
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z-Plane
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Phase Response
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FIR / IIR Comparison

91st order linear phase FIR

or

7th order elliptic IIR
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FIR Coefficient Rounding
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FIR Coefficient Precision

• Finite precision FIR filters add transfer functions of 
two filters 
– The infinite precision FIR filter
– A rounding error FIR filter 

• The infinite precision FIR dominates the passband 
response

• The rounding error FIR filter sets stopband 
attenuation when the infinite precision FIR response 
is much smaller
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FIR Coefficient Precision
• Random rounding errors transform to white 

“stopband noise”
– Stopband attenuation increases by about 6dB for each bit of 

coefficient precision 

• If you don’t like the highest bump in the stopband 
response, generate a new pattern of rounding error
– Use slightly different dc gain
– Or slightly different Parks-McClellan (remez) bands

• Trial and error can improve filter stopbands by 
several dB at a given coefficient precision 
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Filter Dynamic Range

• Digital filters need more numeric dynamic range than 
the signals they process
– They must not overload
– They must not surprise you with quantization noise

• Digital multiplier/accumulators are multiplexed
– Difference equations are added up term-by-term, giving us 

“intermediate transfer functions” to worry about
– Intermediate overload is as bad as overload

• Let’s look at an IIR bandstop filter example…
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2nd-Order Bandstop Filter

• Bandstop filters have  
transfer functions:

• Their gains are close to 
unity at both dc and fs/2
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2nd-Order Bandstop Filter

• Bandstop design 
specifications:
– fS=1MHz
– fP=20kHz
– QP=100

θ
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Direct Form Realization
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Note: Direct form realizations are not ideal for higher order IIR filters. Lattice filters 
(and variants), which simulate LC ladders, are less susceptible to finite 
coefficient precision and dynamic range.
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2nd-Order Bandstop Filter

• We can build a direct form bandstop this way (method #1):

• Or this way (method #2):

• The order of addition matters if we overload in the middle!
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2nd-Order Bandstop Filter

• Proceeding from left to right, the difference 
equation generates 3 intermediate transfer 
functions plus the complete bandstop transfer 
function

• All 4 of these transfer function magnitude 
responses for method 1 are shown on the 
next slide 
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Method #1 Bandstop Responses
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Method #1 Bandstop Responses

12dB max. gain
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Method #1 Bandstop Responses

• The complete bandstop filter never exceeds 
unity gain for sinusoidal inputs

• Intermediate gains exceed 12dB
– That’s 2-bits above the input MSB

• Let’s examine the area of the notch in more 
detail …
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Method #1 Bandstop Responses
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Method #2 Bandstop Responses

• Next, we’ll examine all the intermediate 
transfer functions for the method #2 
difference equation

• The following figures show significantly 
different intermediate frequency responses 
and somewhat lower maximum intermediate 
gains 
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Method #2 Bandstop Responses
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Avoiding Overload

• Sinusoidal steady-state responses for 
intermediate results are easy to compute and 
provide useful insight, but sinusoidal inputs 
are “never” worst cases for overload

• Absolute values of filter impulse response 
coefficients can give worst-case conditions for 
overload and intermediate overload
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Digital Filter Models

• The order of arithmetic operations in digital 
signal processing matters

• Digital filter models must be “cycle true”

• Unanticipated filter overloads are inexcusable 
design errors
– Real-world chip developments must never be late-

to-market because of such easy-to-avoid errors!
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Biquad Quantization Noise
• Suppose we build our bandstop difference equation with B-bit 

registers and a BxB = 2B hardware multiplier:

• Build up the difference equation leaving partial results in a 2B-bit 
accumulator
– Accumulate y(k)’s with a minimum number (i.e. 1) of rounding 

operations
– If each of the 5 products above is rounded to B-bits, you’ll have 5X 

more quantization noise power

• Output noise from rounding operations can be large for high Q 
digital biquads
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Digital Filter Models

• Datapath rounding operations can degrade 
digital filter dynamic ranges by surprisingly 
large amounts

• Digital filter models must be “bit true”

• Bit true and cycle true models require that 
filter models (and modelers) provide exact 
test vectors for integrated digital filters
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Limit Cycles

• A disadvantage of digital IIR filters relative to digital 
FIR filters is that their responses get strange as they 
settle in response to transients

• As settling error approaches rounding error, offsets 
and oscillations can occur
– Non-zero offsets lead to “dead zones”
– Oscillations are called “limit cycles”

• A combination of rounding (or truncation) and 
feedback is required for limit cycles 
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Limit Cycles

• We’ll look for limit 
cycles in the 
bandpass filter:

• Note that this filter 
passes frequencies 
near fS/4

0.125 (z-2-1)

z-2 + 0.75
H(z) =



EECS 247 Lecture 11:  Digital Filters © 2002 B. Boser   45A/D
DSP

Frequency (kHz)

G
ai

n
 (d

B
)

20

0

- 20

- 40

- 60
0 100 200 300 400 500

Bandpass Magnitude Response

EECS 247 Lecture 11:  Digital Filters © 2002 B. Boser   46A/D
DSP

Bandpass Transient Response

• Let’s examine the bandpass filter’s response 
to the initial condition y(1)=y(2)=10

• The bandpass filter output should decay to 0
– The floating point filter output does
– The fixed point filter output doesn’t
– Let’s take a look…
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Limit Cycles

• This bandpass filter limit cycle oscillation 
occurs right at fs/4
– Right in the middle of the filter passband
– Could this be a low-level input to the filter at fs/4?

• IIR filter designers must evaluate and be wary 
of limit cycle oscillations
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Digital Filter Models

• Bit true and cycle true digital filter models 
allow simulation and evaluation of:
– Overload and intermediate overload
– Quantization noise
– Limit cycles and dead zones
– Finite precision coefficient effects

• Spending time and money on silicon without 
such models is crazy!


