Tones

5" order SD modulator
— DC inputs
— Tones
— Dither
— KT/C noise
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5th Order Modulator
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5th Order Noise Shaping
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In-Band Noise
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5th Order Noise Shaping
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Out-of-Band vs In-Band Signals

A digital (low-pass) filter with suitable coefficient precision can
eliminate out-of-band quantization noise

* No filter can attenuate unwanted in-band components without
attenuating the signal

*  We’'ll spend some time making sure the components at f./2-Nf;,
will not “mix” down to the signal band

» But first, let's look at the modulator response to small DC inputs
(or offset) ...
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SD Tones
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Limit Cycles

* Representing a DC term with a -1/+1 pattern ... e.g.
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Limit Cycles

Fundamental
f, = f Vo
d ~ 's
VDAC
_SMsz
v
=6kHz
Tone velocity
daf, _ f,
dVDC VDAC
=3kHz/V

DSP

EECS 247 Lecture 21: Oversampled ADC Implementation

© 2002 B. Boser 9

SD Tones
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SD Tones

» Tones follow the noise shape

* The fundamental of a tone that falls into a
“quantization noise null” disappears ...
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SD Tones
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SD Tones

* In-band tones look like signals

» Can be a big problems in some applications

— E.g. audio = even tones with power below the quantization noise
floor can be audible

» Tones near f/2 can be aliased down into the signal band

— Since they are often strong, even a small alias can be a big
problem

— We will look at mechanisms that alias tones in the next lecture

* First let's look at dither as a means to reduce or eliminate in-
band tones
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Dither

» DC inputs can of course be represented by many
possible bit patterns

* Including some that are random but still average to
the DC input

» The spectrum of such a sequence has no tones

* How can we get a SD modulator to produce such
“randomized” sequences?
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Dither

* The target DR for our audio SD is 16 Bits, or 98dB

» Let’'s choose the sampling capacitor such that it limits
the dynamic range:
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Dither
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kT/C Noise

» So far we've looked at noise added to the
input of the SD modulator, which is also the
input of the first integrator

* Now let’s add noise also to the input of the
second integrator

* Let's assume a 4pF sampling capacitor

— This gives 1.4 x 32nV rms noise
(two uncorrelated 32nV samples per clock)
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kT/C Noise

50 :
—— No noise ¢ 2mV DC input
1st Integrator
2nd Integrator
0

¢ Noise from 2d integrator
* smaller than 1st
50 integrator noise

/,.-w ¢ shaped
-100 . ﬁ,ﬁ + Why?

Output Spectrum [dBWN] / Int. Noise [dBV]

r:;:‘!i;'
P
5
-150
0 1 2 3 4 5
Frequency [Hz] x 10
EECS 247 Lecture 21: Oversampled ADC Implementation © 2002 B. Boser 19

kT/C Noise

¢ Noise from 1stintegrator is added directly to the input
¢ Noise from 2nd integrator is first-order noise shaped
¢ Noise from subsequent integrators is attenuated even further

- Especially for high oversampling ratios, only the first 1 or 2 integrators
add significant thermal noise. This is true also for other imperfections.
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Full-Scale Inputs

» With practical levels of thermal noise added, let’s try
a 5kHz sinusoidal input near full-scale (0.3V)

» No distortion is visible in the spectrum
— 1-Bit modulators are intrinsically linear
— But tones exist at high frequencies
- to the oversampled modulator, a sinusoidal
input looks like two “slowly” alternating DCs ...
hence giving rise to limit cycles
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Full-Scale Inputs
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V. . Interference

ref

» Dither successfully removes in-band tones that would corrupt
the signal

» The high-frequency tones in the quantization noise spectrum will
be removed by the digital filter following the modulator

* What if some of these strong tones are demodulated to the
base-band before digital filtering?

*  Why would this happen?
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AM Modulation

X,(t)
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AM Modulation in DAC
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AM Modulation in DAC
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V. . Interference
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V. . Interference

ref

» Simulation are for specified amounts of f/2 interference in the
DAC reference

» As predicted interference demodulates the high-frequency tones

» Since the high frequency tones are strong, a small amount
(1nmV) of interference suffices to create huge base-band tones

» Stronger interference (1mV) rises the noise floor also

* Amplitude of demodulated tones is proportional to interference
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Output Spectrum [dBWN]
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Symmetry of the spectra at f/2 and DC confirm that this is AM modulation
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V. Tone Velocity
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V. Tone Velocity

ref

* The velocity of AM demodulated tones is half that of
the native tone

» Such differences help debugging of real silicon

* How clean does the reference have to be?
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V. . Interference
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V. . Interference

ref

» 120dB of clock-to-V, isolation is not sufficient for digital audio
applications

» Achieving this level of performance requires careful engineering
» Getting an accurate requirement is the first (and an essential) step

 See
E. Swanson, N. Sooch, and D. Knapp, “Method for
Reducing Effects of Electrical Noise in Analog-to-Digital
Converter,” U.S. Patent 4746899, 1988
for more ideas
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Summary

» Our stage 2 model can drive almost all capacitor sizing
decisions

— Gain scaling
— KT/C noise
— Dither

» Dither removes effectively in-band tones
- Actual tonality determined by demodulation of limit cycles near f/2

* Next we will add relevant component imperfections, e.g.
— Real capacitors aren'’t perfect

— Real opamps aren'’t ideal

» We'll model nonlinearities in the SD system next time ...
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