UNIVERSITY OF CALIFORNIA
 College of Engineering
 Department of Electrical Engineering and Computer Sciences
 NTU IC-776CA

Homework 2
B. E. BOSER

Due Thursday, October 6, 2005
EECS 247
Fall 2005

1. Design a filter with the following response:

$$
\frac{s\left(s^{2}+9.839 \times 10^{12}\right)\left(s^{2}+2.081 \times 10^{13}\right)}{\left(s+2.34 \times 10^{7}\right)\left(s^{2}+5.831 \times 10^{5} s+4.066 \times 10^{13}\right)\left(s^{2}+4.243 \times 10^{6} s+7.811 \times 10^{13}\right)}
$$

a) What kind of a filter is this (low-pass, band-pass, etc)?
b) Plot the magnitude response using Matlab. What are the filter cutoff-frequency, passband ripple, and stopband attenuation?
c) Realize the filter with a cascade of Tow-Thomas biquads and a single first-order section (that you will have to "invent" yourself). Use $\mathrm{C}=100 \mathrm{pF}$ for all capacitors. Choose the amplifier gains such that the passband outputs of all amplifiers are equal to 1 V for a 1 V input. Show your result in SPICE and compare with Matlab.
d) Determine the total noise at the filter output in $\mu \mathrm{V}$ rms. Use SPICE and noiseless operational amplifiers with 1 GHz unity-gain bandwidth.
e) Rescale the capacitors to meet a $100 \mu \mathrm{~V} \mathrm{rms}$ noise target.
f) Resimulate your filter with "real" opamps with 20 MHz unity-gain bandwidth and $10 \mathrm{k} \Omega$ equivalent noise resistance. How do the amplitude response and total noise change? Change the specifications for the operational amplifier to get less than 1 dB error in the magnitude response up to 10 MHz and $200 \mu \mathrm{~V}$ rms noise. Are the new amplifier specs realistic? Check the web to find an appropriate part (Burr Brown, ADI, Maxim, Linear Technology, National Semiconductor ...).
2. Consider the analog signal $x(t)=\cos \left(2 \pi f_{1} t\right)+\cos \left(2 \pi f_{2} t\right)+\cos \left(2 \pi f_{3} t\right)$ with $f_{1}=0.5 M H z$, $\mathrm{f}_{2}=3 \mathrm{MHz}, \mathrm{f}_{3}=6 \mathrm{MHz}$.
a) What is the minimum sampling frequency f_{s} that avoids aliasing?
b) Assume that we sample $x(t)$ at $f_{s}=5 \mathrm{MHz}$. What is the discrete time signal obtained after sampling? Can we reconstruct the original signal from the discrete time sequence? Give an example of a signal $x^{\prime}(t)$ that has the same discrete time representation as $x(t)$.

