Introduction to

Formal Verification and Logic Synthesis
Yukio Miyasaka

Contents

Formal Verification

* Equivalence Checking
* Binary Decision Diagram
* Boolean Satisfiability Problem

Logic Synthesis

* Two-Level Logic Synthesis

* Two-Level Logic to Multi-Level Logic
* Multi-Level Logic Optimization

Formal Verification

* Prove that a given logic circuit meets some given properties

e Often compared to random simulation, here are some tradeoffs:

- Formal Verification Random Simulation

Coverage 100% #itest patterns / #all possible patterns

Time ~0O(exp(circuit size)) O(#test patterns * circuit size)

Note: coverage has a different meaning for bounded model checking

Equivalence Checking

* Given two implementations, prove they are functionally equivalent
* For simplicity, assume the implementations are combinational logic circuits
e Optimized implementation v.s. Golden model (Spec)

* Exhaustive simulation is enough to prove this property

* However, it takes an exponential amount of time
* N inputs -> 2”~N patterns to simulate
e O(exp(#inputs))

e Can we do it better?

Binary Decision Diagram (BDD)

* Binary tree
* Redundant nodes (equivalent cofactors) are removed
* Each node has a unique function

X1 X2 X3 f
7
rd
0 0 0 0 7
0 0 1 0
00 O
0 1 1 1 7 @ /
1 0 0 0
R ENCgR M oSN
1 1 0 0 4 4 ! !
11 1 1 0 0 0 1 0 1 0 1

Randal E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” in ACM Computing Surveys, vol. 24, no. 3, pp. 293-318, 1992.

BDD Operations

* We can construct a BDD for the result of operation by a recursive procedure
« e.g. BDD z = AND(BDD x, BDD y);

* Runtime is bounded by O(#BDD nodes) while #8DD nodes is usually smaller than exp(#inputs)

Output BDDs to be compared
with the golden model

Symbolic Simulation

Boolean Satisfiability Problem

* Problem definition 3x. f(x) = 1.
* One of the most famous NP-complete problems
* f(x) is usually given as CNF (Conjunctive Normal Form) a.k.a. POS

e Variable X1, Xo, .

e Literal X1, X1, X9, Xq, ..

* Clause X1 + x5 + X3, ...

* CNF (Cluase A) - (Clause B) - ...

* Many heuristics have been proposed
* Can be solved much faster than the other NP-complete problems

History of SAT Solver Improvement

+ 2-literal clause table

1000 _
900 - No heuristics + Restarting

; /.
> S
] * 3/ (Current St
200 \ - ._f ; $ (Current Standard)
700 X i X g

é’ 600 - Clause learning \;’ o ,§ °
=500 - \ I S
= 400 > g ’ T S
6 _ S 2 §J s o
300 - = ~afs 48
| Clause learning
200 4 unl , j -
100 - and unlearning
0 .
0 100 200 300 400 500 600 700 800 900 1000

Instances

H. Katebi, K. A. Sakallah, and J. P. Marques-Silva, “"Empirical study of the anatomy of
modern sat solvers," in Proc. 14th SAT, 2011, pp.343-356.

SAT-based Equivalence Checking

Solve

JInputs, | nternal.
fMITER (Input§, Internal, NEQ) - NEQ.

If satisfiable, there exists a pattern where

Spec two circuits output different values.

fAND = (a, + b’ + C)(a + C,)(b + C,)

] If unsatisfiable, two circuits are equivalent.

Inputs

MITER Circuit

Performance Comparison

* For il0 benchmark (257 inputs, 224 outputs, about 2000 gates)
e Exhaustive simulation: Never ends (22257 > 10725 patterns)

e Symbolic simulation: 0.65 sec
* SAT-based: 0.43 sec

* SAT-based method is usually faster than symbolic simulation
* Exceptions are arithmetic circuits like multipliers

Logic Synthesis

Logic Synthesis

e Generates a logic circuit from various kinds of descriptions such as
truth table, Boolean expression, etc.

* Important metrics: area (#gates) and depth (#levels)

Two-Level Logic

 AND gates in the first level, OR gates in the second level
* Direct representation of SOP
* The basic strategy is the same as Karnaugh map

 However, for more than one output, we have to care logic sharing
ex=a+abc, y=b'c+a'bc is better than
e x =a+ bc, y=b'c+ac

e ESPRESSO heuristic logic minimizer:

* Developed by Robert K. Brayton (emeritus professor at UC Berkeley)
* https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm

* Incompatible with modern C compilers, while you can find a patched version on
GitHub or other websites

https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm

ESPRESSO: Example

test.pla

.1 3
.0 2
.p 8
000
001
010
011
100
101
110
111
.e

00
01
00
11
10
11
10
10

espresso test.pla > out.pla

)

out.pla
.13
.0 2
-01 01

011 11
1-- 10

Two-Level Logic to Multi-Level Logic

* We can reduce #gates by factoring
cy=b'c+a'c=(b"+a')c
 Fast Extract is a greedy algorithm for factoring

* For each pair of products, calculate divisors

* (abc,a’'bc’) - divisors = {ac + a’c’, b}
For each divisor, count how many literals it can save
Factor out the divisor that can save the most
Repeat until no more factoring is possible
(Some details are omitted)

J. Rajski, J. Vasudevamurthy, “The test-preserving concurrent decomposition and factorization of
Boolean expressions”, IEEE Trans. CAD, Vol.11 (6), June 1992, pp.778-793.

Fast Extract: Example

5-input majority function: abc + abd + abe + acd + ---

* Factoring out a single variable can save 5 literals, while sum of two variables can save 10 literals
Factorouta + b

* (a+b)(cd + ce +de) + abc + abd + abe + cde

Factor out ab
* (a+b)(cd+ce+de)+ab(c+d+e)+cde

Factoroutc + d

* (a+b)(cd+ (c+d)e)+ ab((c +d) + e) + cde

After handling trivial cases where cd is shared, we get 12 gate implementation:

First level:
Second level:
Third level:
Forth level:
Fifth level:

ng=a+bn, =ab,n,=c+d,n; =cd
ng = Nye,Ns = N, + e,Ng = n3e

N, = N3 + Ny, Ng = Ny Ng

Ng = NgNy, Ny = Ng + Ng

Ny = Ng + Ny

Multi-Level Logic Optimization

* Fast Extract is not optimal
* Quality depends on the initial SOP
 What if multiple divisors can save the same number of literals?
* One of them might lead to a better result in the end

* Rewriting is one of the most popular optimization methods
e Extract a subcircuit (4-5 inputs) iteratively
* Replace it with an equivalent precomputed minimum circuit
 How can we precompute the minimum circuit?

Exact Synthesis

* Encode all possible circuits of N gates into a CNF
 Let a SAT solver find one that is equivalent to the specification

* If the solver cannot find one with N-1 gates but one with N gates, the
latter one is proven to be minimum

* There are many encoding methods

W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, "SAT-based exact synthesis: Encodings, topology
families, and parallelism", IEEE Trans. CAD, Vol. 39(4), April 2020, pp. 871-884.

Exact Synthesis Encoding

Gate type Gate 1
select signals

Input /T 1\ /.
select signals
\Allinputs All inputs

Exact Synthesis Encoding

Gate type
select signals

~—

Input /T 1\ /.
select signals
k\minputs All inputs

Gate 2

N

N .
All inputs All inputs
+ Gate 1 + Gate 1

21

Exact Synthesis Encoding

For each output

Gate type
select signals

~—

Gate 2

N

N .
All inputs All inputs
+ Gate 1 + Gate 1

—

All inputs
+ All gates
+ Constants

Input S /——\ /—

select signal

k\minputs All inputs

22

Solve

ASelect signals.VInputs.

Exact Synthesis Encoding

f (Inputs, Select Signals) = Spec (Inputs).

For each output

Gate type
select signals

~—

Gate 2

N

N .
All inputs All inputs
+ Gate 1 + Gate 1

—

All inputs
+ All gates
+ Constants

Input S /——\ /—

select signal

k\minputs All inputs

23

More About Logic Optimization

Exact synthesis works up to 5 gates.

Rewriting is local optimization, does not necessarily lead to the global optimal

There are many other optimization methods
* Merge equivalent internal nodes
e Substitute one node with a new subcircuit
 Compute internal don’t-cares using BDD, and perform equivalent transformation

Phase ordering problem
* Once you apply one optimization, some other optimizations may be no longer effective
* The effective order varies by circuits
* Machine learning to find a good optimization order?

	Introduction to �Formal Verification and Logic Synthesis
	Contents
	Formal Verification
	Equivalence Checking
	Binary Decision Diagram (BDD)
	BDD Operations
	Symbolic Simulation
	Boolean Satisfiability Problem
	History of SAT Solver Improvement
	SAT-based Equivalence Checking
	Performance Comparison
	Logic Synthesis
	Logic Synthesis
	Two-Level Logic
	ESPRESSO: Example
	Two-Level Logic to Multi-Level Logic
	Fast Extract: Example
	Multi-Level Logic Optimization
	Exact Synthesis
	Exact Synthesis Encoding
	Exact Synthesis Encoding
	Exact Synthesis Encoding
	Exact Synthesis Encoding
	More About Logic Optimization

