
Introduction to
Formal Verification and Logic Synthesis

Yukio Miyasaka

Contents

Formal Verification
• Equivalence Checking

• Binary Decision Diagram
• Boolean Satisfiability Problem

Logic Synthesis
• Two-Level Logic Synthesis
• Two-Level Logic to Multi-Level Logic
• Multi-Level Logic Optimization

Formal Verification

• Prove that a given logic circuit meets some given properties
• Often compared to random simulation, here are some tradeoffs:

Formal Verification Random Simulation
Coverage 100% #test patterns / #all possible patterns

Time ~O(exp(circuit size)) O(#test patterns * circuit size)

Note: coverage has a different meaning for bounded model checking

Equivalence Checking

• Given two implementations, prove they are functionally equivalent
• For simplicity, assume the implementations are combinational logic circuits
• Optimized implementation v.s. Golden model (Spec)

• Exhaustive simulation is enough to prove this property
• However, it takes an exponential amount of time

• N inputs -> 2^N patterns to simulate
• O(exp(#inputs))

• Can we do it better?

Binary Decision Diagram (BDD)

• Binary tree
• Redundant nodes (equivalent cofactors) are removed
• Each node has a unique function

Randal E. Bryant, “Symbolic Boolean manipulation with ordered binary-decision
diagrams,” in ACM Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

BDD Operations

• We can construct a BDD for the result of operation by a recursive procedure
• e.g. BDD z = AND(BDD x, BDD y);

• Runtime is bounded by O(#BDD nodes) while #BDD nodes is usually smaller than exp(#inputs)

x y z

Symbolic Simulation

x1
x2
x0

x3

x4

y1

y0

x2

x2

x3

n12

1 c 4

1 c 3

10

x0

x2

n13

1 c 4

1 c 3

10

x2

x3

x4

n14

1 c 8

1 c 7

1 c 6

10

x1

x2

x3

n15

1 c b

1 c a

1

1 c 5

0

x0

x1

x2

x3

n16

1 d 3

1 c c1 d 2

1 c 5

1

1 d 1

0

1 d 0

x1

x2

x3

x4

n17

1 d a

1 d 91 d 7

1 d 8

1 c d

1 c 6

1 0

Output BDDs to be compared
with the golden model

Boolean Satisfiability Problem

• Problem definition ∃�⃗�𝑥.𝑓𝑓 �⃗�𝑥 = 1.
• One of the most famous NP-complete problems
• 𝑓𝑓 �⃗�𝑥 is usually given as CNF (Conjunctive Normal Form) a.k.a. POS

• Variable 𝑥𝑥1, 𝑥𝑥2, …
• Literal 𝑥𝑥1, 𝑥𝑥1′ , 𝑥𝑥2, 𝑥𝑥2′ , …
• Clause 𝑥𝑥1 + 𝑥𝑥2′ + 𝑥𝑥3, …
• CNF 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐴𝐴 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵 ⋅ …

• Many heuristics have been proposed
• Can be solved much faster than the other NP-complete problems

History of SAT Solver Improvement

H. Katebi, K. A. Sakallah, and J. P. Marques-Silva, ``Empirical study of the anatomy of
modern sat solvers," in Proc. 14th SAT, 2011, pp.343-356.

No heuristics

+ 2-literal clause table

+ Restarting
(Current Standard)

Clause learning

Clause learning
and unlearning

SAT-based Equivalence Checking

a b

c

𝑓𝑓𝐴𝐴𝐴𝐴𝐴𝐴 = (𝐶𝐶′ + 𝑏𝑏′ + 𝑐𝑐)(𝐶𝐶 + 𝑐𝑐′)(𝑏𝑏 + 𝑐𝑐′)

Solve
∃𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶, 𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶.

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶, 𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶,𝑁𝑁𝑁𝑁𝑁𝑁 ⋅ 𝑁𝑁𝑁𝑁𝑁𝑁.

If satisfiable, there exists a pattern where
two circuits output different values.

If unsatisfiable, two circuits are equivalent.

MITER Circuit

Performance Comparison

• For i10 benchmark (257 inputs, 224 outputs, about 2000 gates)
• Exhaustive simulation: Never ends (2^257 > 10^25 patterns)
• Symbolic simulation: 0.65 sec
• SAT-based: 0.43 sec

• SAT-based method is usually faster than symbolic simulation
• Exceptions are arithmetic circuits like multipliers

Logic Synthesis

Logic Synthesis

• Generates a logic circuit from various kinds of descriptions such as
truth table, Boolean expression, etc.

• Important metrics: area (#gates) and depth (#levels)

Two-Level Logic

• AND gates in the first level, OR gates in the second level
• Direct representation of SOP
• The basic strategy is the same as Karnaugh map
• However, for more than one output, we have to care logic sharing

• 𝑥𝑥 = 𝐶𝐶 + 𝐶𝐶′𝑏𝑏𝑐𝑐, 𝑦𝑦 = 𝑏𝑏′𝑐𝑐 + 𝐶𝐶′𝑏𝑏𝑐𝑐 is better than
• 𝑥𝑥 = 𝐶𝐶 + 𝑏𝑏𝑐𝑐, 𝑦𝑦 = 𝑏𝑏′𝑐𝑐 + 𝐶𝐶′𝑐𝑐

• ESPRESSO heuristic logic minimizer:
• Developed by Robert K. Brayton (emeritus professor at UC Berkeley)
• https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm
• Incompatible with modern C compilers, while you can find a patched version on

GitHub or other websites

https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm

ESPRESSO: Example
test.pla

.i 3

.o 2

.p 8
000 00
001 01
010 00
011 11
100 10
101 11
110 10
111 10
.e

out.pla
.i 3
.o 2
.p 3
-01 01
011 11
1-- 10
.e

espresso test.pla > out.pla

Two-Level Logic to Multi-Level Logic

• We can reduce #gates by factoring
• 𝑦𝑦 = 𝑏𝑏′𝑐𝑐 + 𝐶𝐶′𝑐𝑐 = 𝑏𝑏′ + 𝐶𝐶′ 𝑐𝑐

• Fast Extract is a greedy algorithm for factoring
• For each pair of products, calculate divisors

• 𝐶𝐶𝑏𝑏𝑐𝑐,𝐶𝐶𝑎𝑏𝑏𝑐𝑐𝑎 → 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐶𝐶𝑑𝑑𝐼𝐼𝐶𝐶 = 𝐶𝐶𝑐𝑐 + 𝐶𝐶′𝑐𝑐′, 𝑏𝑏
• For each divisor, count how many literals it can save
• Factor out the divisor that can save the most
• Repeat until no more factoring is possible
• (Some details are omitted)

J. Rajski, J. Vasudevamurthy, “The test-preserving concurrent decomposition and factorization of
Boolean expressions”, IEEE Trans. CAD, Vol.11 (6), June 1992, pp.778-793.

Fast Extract: Example
• 5-input majority function: 𝐶𝐶𝑏𝑏𝑐𝑐 + 𝐶𝐶𝑏𝑏𝑑𝑑 + 𝐶𝐶𝑏𝑏𝐶𝐶 + 𝐶𝐶𝑐𝑐𝑑𝑑 + ⋯

• Factoring out a single variable can save 5 literals, while sum of two variables can save 10 literals
• Factor out 𝐶𝐶 + 𝑏𝑏

• 𝐶𝐶 + 𝑏𝑏 𝑐𝑐𝑑𝑑 + 𝑐𝑐𝐶𝐶 + 𝑑𝑑𝐶𝐶 + 𝐶𝐶𝑏𝑏𝑐𝑐 + 𝐶𝐶𝑏𝑏𝑑𝑑 + 𝐶𝐶𝑏𝑏𝐶𝐶 + 𝑐𝑐𝑑𝑑𝐶𝐶
• Factor out 𝐶𝐶𝑏𝑏

• 𝐶𝐶 + 𝑏𝑏 𝑐𝑐𝑑𝑑 + 𝑐𝑐𝐶𝐶 + 𝑑𝑑𝐶𝐶 + 𝐶𝐶𝑏𝑏 𝑐𝑐 + 𝑑𝑑 + 𝐶𝐶 + 𝑐𝑐𝑑𝑑𝐶𝐶
• Factor out 𝑐𝑐 + 𝑑𝑑

• 𝐶𝐶 + 𝑏𝑏 𝑐𝑐𝑑𝑑 + 𝑐𝑐 + 𝑑𝑑 𝐶𝐶 + 𝐶𝐶𝑏𝑏 𝑐𝑐 + 𝑑𝑑 + 𝐶𝐶 + 𝑐𝑐𝑑𝑑𝐶𝐶
• After handling trivial cases where 𝑐𝑐𝑑𝑑 is shared, we get 12 gate implementation:

• First level: 𝐼𝐼0 = 𝐶𝐶 + 𝑏𝑏,𝐼𝐼1 = 𝐶𝐶𝑏𝑏,𝐼𝐼2 = 𝑐𝑐 + 𝑑𝑑,𝐼𝐼3 = 𝑐𝑐𝑑𝑑
• Second level: 𝐼𝐼4 = 𝐼𝐼2𝐶𝐶,𝐼𝐼5 = 𝐼𝐼2 + 𝐶𝐶,𝐼𝐼6 = 𝐼𝐼3𝐶𝐶
• Third level: 𝐼𝐼7 = 𝐼𝐼3 + 𝐼𝐼4,𝐼𝐼8 = 𝐼𝐼1𝐼𝐼5
• Forth level: 𝐼𝐼9 = 𝐼𝐼0𝐼𝐼7,𝐼𝐼10 = 𝐼𝐼8 + 𝐼𝐼6
• Fifth level: 𝐼𝐼11 = 𝐼𝐼9 + 𝐼𝐼10

Multi-Level Logic Optimization

• Fast Extract is not optimal
• Quality depends on the initial SOP
• What if multiple divisors can save the same number of literals?
• One of them might lead to a better result in the end

• Rewriting is one of the most popular optimization methods
• Extract a subcircuit (4-5 inputs) iteratively
• Replace it with an equivalent precomputed minimum circuit
• How can we precompute the minimum circuit?

Exact Synthesis

• Encode all possible circuits of N gates into a CNF
• Let a SAT solver find one that is equivalent to the specification

• If the solver cannot find one with N-1 gates but one with N gates, the
latter one is proven to be minimum

• There are many encoding methods

19

W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, "SAT-based exact synthesis: Encodings, topology
families, and parallelism", IEEE Trans. CAD, Vol. 39(4), April 2020, pp. 871-884.

Exact Synthesis Encoding

20

Gate 1

All inputs All inputs

Input
select signals

Gate type
select signals

Exact Synthesis Encoding

21

Gate 1

All inputs All inputs

Input
select signals

Gate type
select signals

Gate 2

All inputs
+ Gate 1

All inputs
+ Gate 1

Exact Synthesis Encoding

22

Gate 1

All inputs All inputs

Input
select signals

Gate type
select signals

Gate 2

All inputs
+ Gate 1

All inputs
+ Gate 1

...
All inputs

+ All gates
+ Constants

For each output

Exact Synthesis Encoding

23

Gate 1

All inputs All inputs

Input
select signals

Gate type
select signals

Gate 2

All inputs
+ Gate 1

All inputs
+ Gate 1

...
All inputs

+ All gates
+ Constants

For each output

Solve
∃𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝐼𝐼 𝐶𝐶𝑑𝑑𝑠𝑠𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶.∀𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶.

𝑓𝑓 𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶, 𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝑐𝑐𝐼𝐼 𝐶𝐶𝑑𝑑𝑠𝑠𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑆𝑆𝐼𝐼𝐶𝐶𝑐𝑐 𝐼𝐼𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐶𝐶 .

More About Logic Optimization

• Exact synthesis works up to 5 gates.
• Rewriting is local optimization, does not necessarily lead to the global optimal
• There are many other optimization methods

• Merge equivalent internal nodes
• Substitute one node with a new subcircuit
• Compute internal don’t-cares using BDD, and perform equivalent transformation

• Phase ordering problem
• Once you apply one optimization, some other optimizations may be no longer effective
• The effective order varies by circuits
• Machine learning to find a good optimization order?

	Introduction to �Formal Verification and Logic Synthesis
	Contents
	Formal Verification
	Equivalence Checking
	Binary Decision Diagram (BDD)
	BDD Operations
	Symbolic Simulation
	Boolean Satisfiability Problem
	History of SAT Solver Improvement
	SAT-based Equivalence Checking
	Performance Comparison
	Logic Synthesis
	Logic Synthesis
	Two-Level Logic
	ESPRESSO: Example
	Two-Level Logic to Multi-Level Logic
	Fast Extract: Example
	Multi-Level Logic Optimization
	Exact Synthesis
	Exact Synthesis Encoding
	Exact Synthesis Encoding
	Exact Synthesis Encoding
	Exact Synthesis Encoding
	More About Logic Optimization

