Introduction to Formal Verification and Logic Synthesis Yukio Miyasaka

Contents

Formal Verification

- Equivalence Checking
 - Binary Decision Diagram
 - Boolean Satisfiability Problem

Logic Synthesis

- Two-Level Logic Synthesis
- Two-Level Logic to Multi-Level Logic
- Multi-Level Logic Optimization

Formal Verification

- Prove that a given logic circuit meets some given properties
- Often compared to random simulation, here are some tradeoffs:

	Formal Verification	Random Simulation
Coverage	100%	#test patterns / #all possible patterns
Time	~O(exp(circuit size))	O(#test patterns * circuit size)

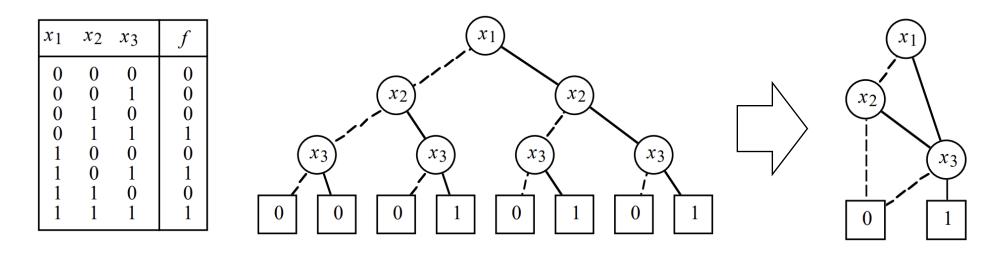
Note: coverage has a different meaning for bounded model checking

Equivalence Checking

- Given two implementations, prove they are functionally equivalent
 - For simplicity, assume the implementations are combinational logic circuits
 - Optimized implementation v.s. Golden model (Spec)
- Exhaustive simulation is enough to prove this property
- However, it takes an exponential amount of time
 - N inputs -> 2^N patterns to simulate
 - O(exp(#inputs))
- Can we do it better?

Binary Decision Diagram (BDD)

- Binary tree
- Redundant nodes (equivalent cofactors) are removed
- Each node has a unique function



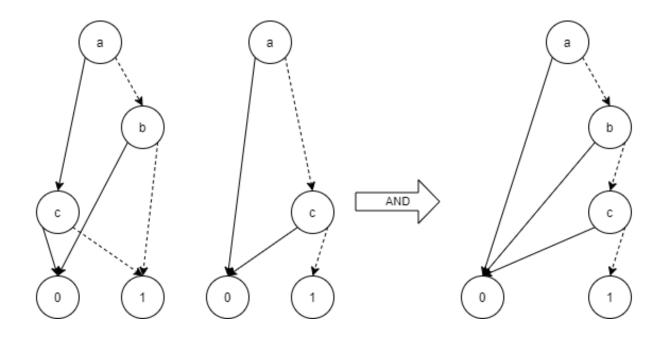
Randal E. Bryant, "Symbolic Boolean manipulation with ordered binary-decision diagrams," in ACM Computing Surveys, vol. 24, no. 3, pp. 293–318, 1992.

BDD Operations

- We can construct a BDD for the result of operation by a recursive procedure
 - e.g. BDD z = AND(BDD x, BDD y);

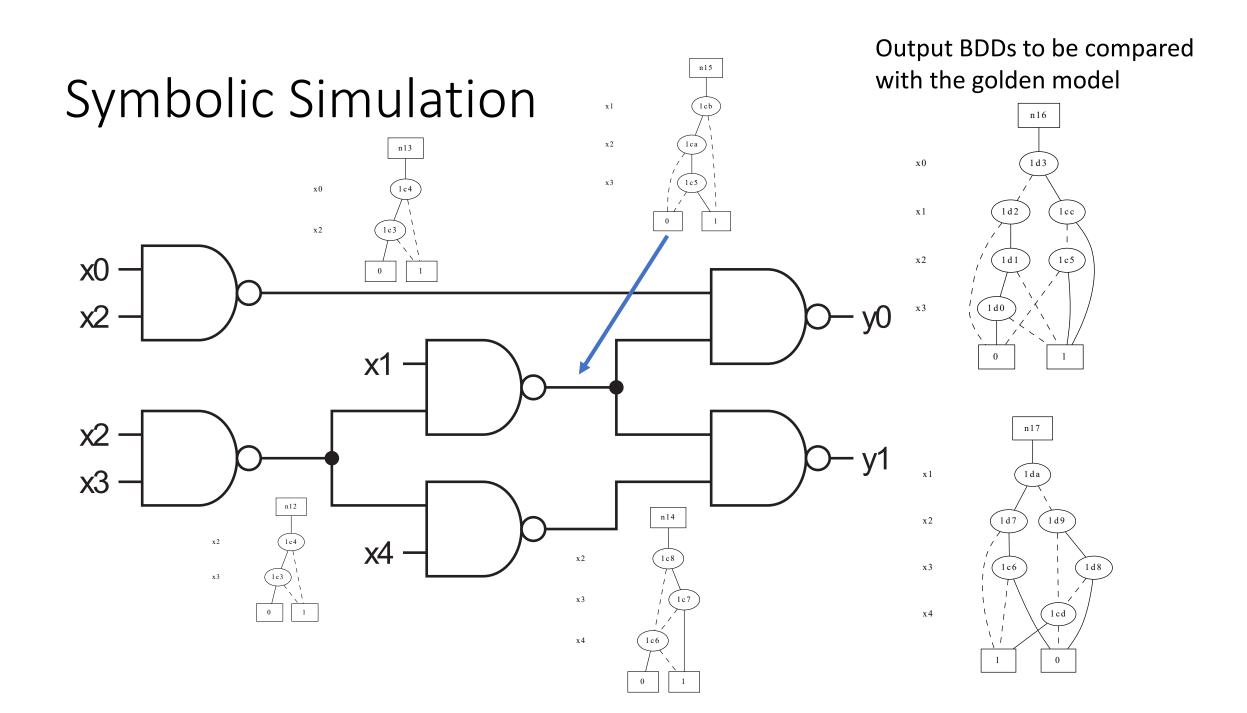
Χ

• Runtime is bounded by O(#BDD nodes) while #BDD nodes is usually smaller than exp(#inputs)



Ζ

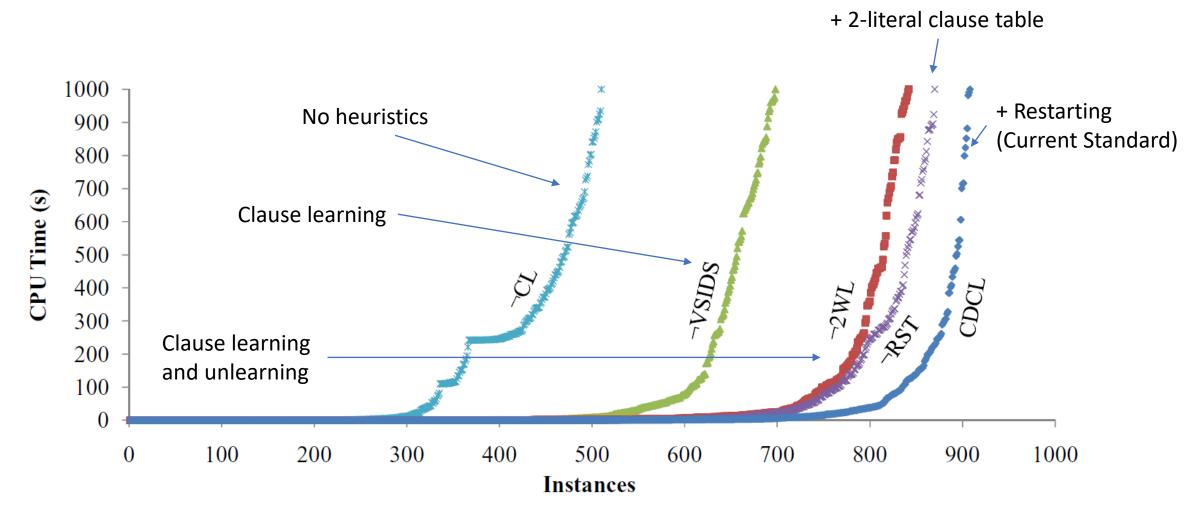
V



Boolean Satisfiability Problem

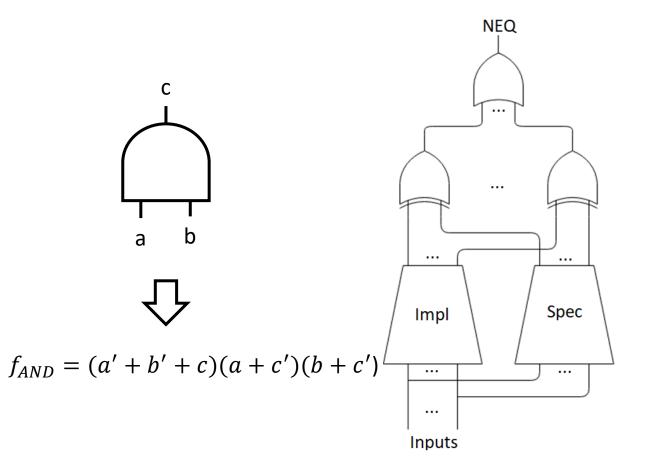
- Problem definition $\exists \vec{x}. f(\vec{x}) = 1.$
- One of the most famous NP-complete problems
- $f(\vec{x})$ is usually given as CNF (Conjunctive Normal Form) a.k.a. POS
 - Variable x_1, x_2, \dots
 - Literal $x_1, x'_1, x_2, x'_2, ...$
 - Clause $x_1 + x_2' + x_3, ...$
 - CNF $(Cluase A) \cdot (Clause B) \cdot ...$
- Many heuristics have been proposed
- Can be solved much faster than the other NP-complete problems

History of SAT Solver Improvement



H. Katebi, K. A. Sakallah, and J. P. Marques-Silva, ``Empirical study of the anatomy of modern sat solvers," in Proc. 14th SAT, 2011, pp.343-356.

SAT-based Equivalence Checking



Solve

 $\exists \overline{Inputs}, \overline{Internal}.$ $f_{MITER}\left(\overline{Inputs}, \overline{Internal}, NEQ\right) \cdot NEQ.$

If satisfiable, there exists a pattern where two circuits output different values.

If unsatisfiable, two circuits are equivalent.

MITER Circuit

Performance Comparison

- For i10 benchmark (257 inputs, 224 outputs, about 2000 gates)
 - Exhaustive simulation: Never ends (2^257 > 10^25 patterns)
 - Symbolic simulation: 0.65 sec
 - SAT-based: 0.43 sec
- SAT-based method is usually faster than symbolic simulation
- Exceptions are arithmetic circuits like multipliers

Logic Synthesis

Logic Synthesis

- Generates a logic circuit from various kinds of descriptions such as truth table, Boolean expression, etc.
- Important metrics: area (#gates) and depth (#levels)

Two-Level Logic

- AND gates in the first level, OR gates in the second level
- Direct representation of SOP
- The basic strategy is the same as Karnaugh map
- However, for more than one output, we have to care logic sharing
 - x = a + a'bc, y = b'c + a'bc is better than
 - x = a + bc, y = b'c + a'c
- ESPRESSO heuristic logic minimizer:
 - Developed by Robert K. Brayton (emeritus professor at UC Berkeley)
 - <u>https://ptolemy.berkeley.edu/projects/embedded/pubs/downloads/espresso/index.htm</u>
 - Incompatible with modern C compilers, while you can find a patched version on GitHub or other websites

ESPRESSO: Example

test.pla		out.pla
.i 3		.i 3
.02		.02
.p 8		.рЗ
000 00	espresso test.pla > out.pla	-01 01
001 01		011 11
010 00		1 10
011 11		.e
100 10		
101 11		
110 10		
111 10		
.e		

Two-Level Logic to Multi-Level Logic

• We can reduce #gates by factoring

• y = b'c + a'c = (b' + a')c

- Fast Extract is a greedy algorithm for factoring
 - For each pair of products, calculate divisors
 - $(abc, a'bc') \rightarrow divisors = \{ac + a'c', b\}$
 - For each divisor, count how many literals it can save
 - Factor out the divisor that can save the most
 - Repeat until no more factoring is possible
 - (Some details are omitted)

J. Rajski, J. Vasudevamurthy, "The test-preserving concurrent decomposition and factorization of Boolean expressions", IEEE Trans. CAD, Vol.11 (6), June 1992, pp.778-793.

Fast Extract: Example

- 5-input majority function: $abc + abd + abe + acd + \cdots$
 - Factoring out a single variable can save 5 literals, while sum of two variables can save 10 literals
- Factor out a + b
 - (a+b)(cd+ce+de)+abc+abd+abe+cde
- Factor out *ab*
 - (a+b)(cd+ce+de)+ab(c+d+e)+cde
- Factor out c + d
 - (a+b)(cd+(c+d)e) + ab((c+d)+e) + cde
- After handling trivial cases where *cd* is shared, we get 12 gate implementation:
 - First level: $n_0 = a + b, n_1 = ab, n_2 = c + d, n_3 = cd$
 - Second level: $n_4 = n_2 e, n_5 = n_2 + e, n_6 = n_3 e$
 - Third level: $n_7 = n_3 + n_4$, $n_8 = n_1 n_5$
 - Forth level: $n_9 = n_0 n_7, n_{10} = n_8 + n_6$
 - Fifth level: $n_{11} = n_9 + n_{10}$

Multi-Level Logic Optimization

- Fast Extract is not optimal
 - Quality depends on the initial SOP
 - What if multiple divisors can save the same number of literals?
 - One of them might lead to a better result in the end
- Rewriting is one of the most popular optimization methods
 - Extract a subcircuit (4-5 inputs) iteratively
 - Replace it with an equivalent precomputed minimum circuit
 - How can we precompute the minimum circuit?

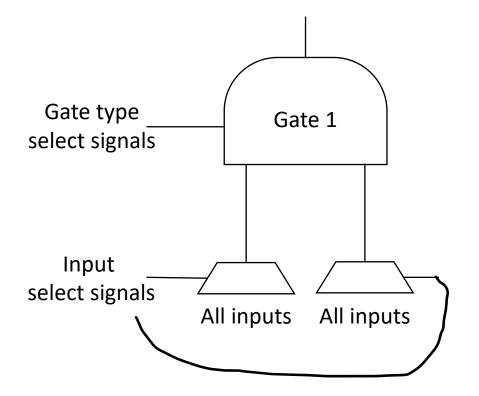
Exact Synthesis

- Encode all possible circuits of *N* gates into a CNF
- Let a SAT solver find one that is equivalent to the specification
- If the solver cannot find one with *N*-1 gates but one with *N* gates, the latter one is proven to be minimum
- There are many encoding methods

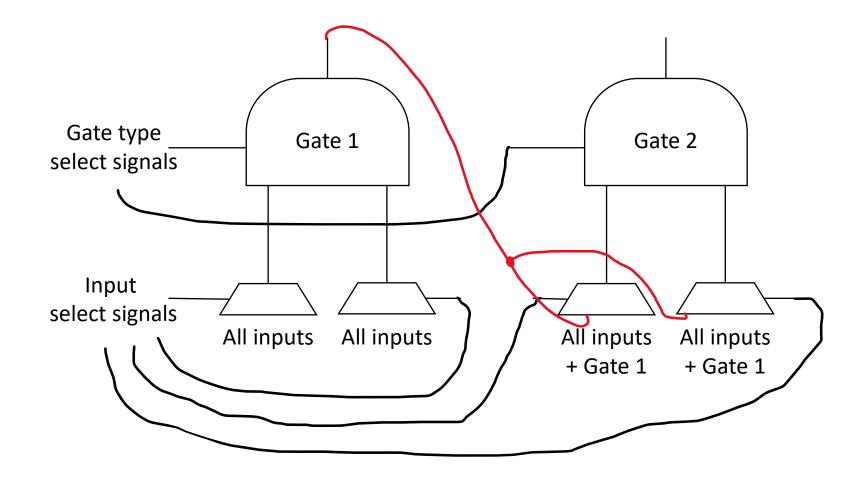
W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, "SAT-based exact synthesis: Encodings, topology families, and parallelism", IEEE Trans. CAD, Vol. 39(4), April 2020, pp. 871-884.

19

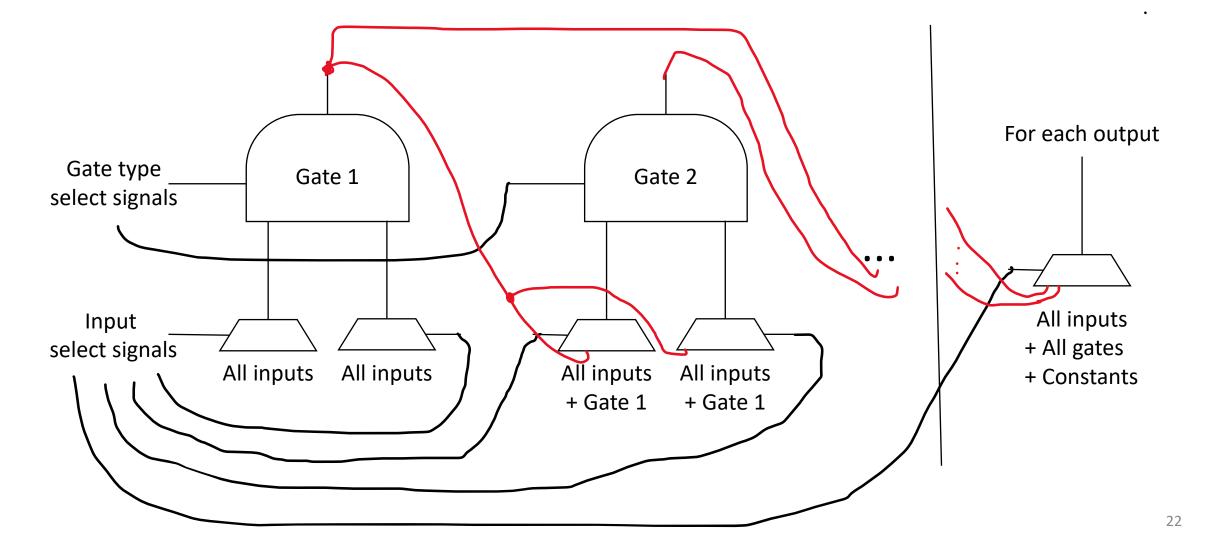
Exact Synthesis Encoding

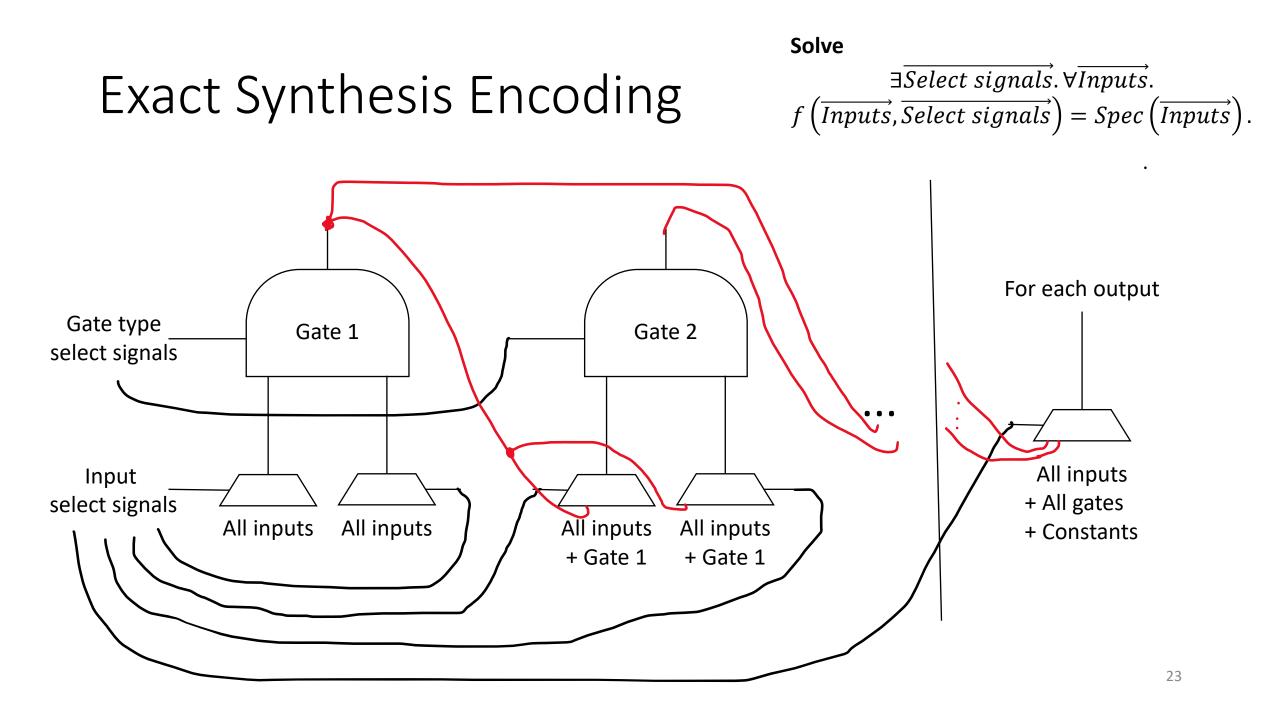


Exact Synthesis Encoding



Exact Synthesis Encoding





More About Logic Optimization

- Exact synthesis works up to 5 gates.
- Rewriting is local optimization, does not necessarily lead to the global optimal
- There are many other optimization methods
 - Merge equivalent internal nodes
 - Substitute one node with a new subcircuit
 - Compute internal don't-cares using BDD, and perform equivalent transformation
- Phase ordering problem
 - Once you apply one optimization, some other optimizations may be no longer effective
 - The effective order varies by circuits
 - Machine learning to find a good optimization order?