

## EECS 151/251A Spring 2023 Digital Design and Integrated Circuits

Instructor:
John Wawrzynek
Lecture 7:
Combinational Logic part 2, FSMs part 1

## Announcements

- HW2 being graded.
- HW 3 posted.
- Wawrzynek office hours moving to Thursday 12:30 starting this week.


## Outline



Combinational Logic:

- Boolean Simplification
- Multi-level Logic,
- NAND/NOR
- $X O R$

Finite State Machines:

## Karnaugh Map Method

$\square$ K-map is a method of representing the TT leading to simplification.


Note: "gray code" labeling.


5 \& 6 variable $k$-maps possible

## K-map Simplification

1. Draw K-map of the appropriate number of variables (between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1 's.
$\checkmark$ Dimensions of groups must be even powers of two (1x1, $1 \times 2,1 \times 4$, $\ldots, 2 \times 2,2 \times 4, \ldots$ )
$\checkmark$ Form as large as possible groups and as few groups as possible.
$\checkmark$ Groups can overlap (this helps make larger groups)
$\checkmark$ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
4. For each group write a product term.

- the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)

5. Form Boolean expression as sum-of-products.

## Product-of-Sums K-map

1. Form groups of 0's instead of 1's.
2. For each group write a sum term.

- the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.


## BCD incrementer example

## Binary Coded Decimal



## BCD Incrementer Example

- Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
- These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
- We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.


## BCD incrementer example

W

 od


| 00 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| 00 | 01 | 11 | 10 |  |
| 00 | 0 | 1 | - | 0 |
| 01 | 0 | 1 | - | 0 |
| 11 | 1 | 0 | - | - |
| 10 | 0 | 1 | - | - |
| 0 |  |  |  |  |

$w=$
$x=$
$y=$ od
ab Z
$z=$
od


| 00 |  |  |  | 01 |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 11 | 10 |  |  |
| 00 | 1 | 1 | - | 1 |
| 01 | 0 | 0 | - | 0 |
| 11 | 0 | 0 | - | - |
| 10 | 1 | 1 | - | - |
|  |  |  |  |  |

## Higher Dimensional K-maps




## Boolean Simplification - Multi-level Logic

## Multi-level Combinational Logic

- Example: reduced sum-of-products form x = adf + aef + bdf + bef + cdf + cef + g
- Implementation in 2-levels with gates:
cost: 17 -input OR, 63 -input AND
=> ~50 transistors
delay: 3 -input AND gate delay +7 -input OR gate delay

- Factored form:
$x=(a+b+c)(d+e) f+g$
cost: 13 -input OR, 2 2-input OR, 13 -input AND => ~20 transistors
delay: 3-input OR + 3-input AND + 2-input OR


## Which is faster?



Footnote: NAND would be used in place of all ANDs and ORs.

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay.
Sometimes a tradeoff between cost and delay.

## Multi-level Combinational Logic

Another Example: $\mathrm{F}=\mathrm{abc}+\mathrm{abd}+\mathrm{a} \mathrm{c}^{\prime} \mathrm{d}^{\prime}+\mathrm{b} \mathrm{b}^{\prime} \mathrm{d}^{\prime}$


$$
\text { let } x=a b \quad y=c+d
$$

$$
f=x y+x^{\prime} y^{\prime}
$$



No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

## NAND-NAND \& NOR-NOR Networks

DeMorgan's Law Review:

$$
\begin{array}{ll}
(a+b)^{\prime}=a^{\prime} b^{\prime} & (a b)^{\prime}=a^{\prime}+b^{\prime} \\
a+b=\left(a^{\prime} b^{\prime}\right)^{\prime} & (a b)=\left(a^{\prime}+b^{\prime}\right)^{\prime}
\end{array}
$$


push bubbles or introduce in pairs or remove pairs: $\left(x^{\prime}\right)^{\prime}=x$.

## NAND-NAND \& NOR-NOR Networks

$\square$ Mapping from AND/OR to NAND/NAND




## Multi-level Networks

Convert to NANDs:
$F=a(b+c d)+b c '$


## EXOR Function Implementations

## Parity, addition mod 2

$$
x \oplus y=x^{\prime} y+x y^{\prime}
$$

| $x$ | $y$ | xor |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| xnor |  |  |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
| 1 | 1 | 0 |

Another approach:



## Finite State Machines

## Finite State Machines (FSMs)

- FSMs:
- Can model behavior of any sequential circuit
- Useful representation for designing sequential circuits
$\square$ As with all sequential circuits: output depends on present and past inputs
- effect of past inputs represented by the current state
- Behavior is represented by State Transition Diagram:
- traverse one edge per clock cycle.



## FSM Implementation



- Flip-flops form state register
- number of states $\leq 2^{\text {number of flip-flops }}$
- CL (combinational logic) calculates next state and output
- Remember: The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog. Now we learn how to design "by hand" to the gate level.

## FSM Example: Parity Checker

A string of bits has "even parity" if the number of 1's in the string is even.

- Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 if the parity thus far is even and outputs a 1 if odd:


| example: 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | even | even | odd | even | odd | odd | even



IN $\qquad$ $\square$ OUT $\square$ $\square$

Next we take this example through the "formal design process". But first, can you guess a circuit that performs this function?

## By-hand Design Process (a)



| example: | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  | even | even | odd | even | odd | odd | even |

"State Transition Diagram"

- circuit is in one of two "states".
- transition on each cycle with each new input, over exactly one arc (edge).
- Output depends on which state the circuit is in.


By-hand Design Process (b) State Transition Table:

| present <br> state | OUT | IN | next <br> state |
| :--- | :---: | :---: | :---: |
| EVEN | 0 | 0 | EVEN |
| EVEN | 0 | 1 | ODD |
| ODD | 1 | 0 | ODD |
| ODD | 1 | 1 | EVEN |

Invent a code to represent states:
Let $0=$ EVEN state, $1=$ ODD state

| present state (ps) | OUT | IN | next state (ns) |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |



Derive logic equations from table (how?):
$O U T=P S$
$N S=P S$ xor $I N$

## By-hand Design Process (c)

Logic equations from table:
OUT $=P S$ NS = PS xor IN

- Circuit Diagram:
- XOR gate for NS calculation
- Flip-Flop to hold present state
- no logic needed for output in this example.



## "Formal" By-hand Design Process

Review of Design Steps:

1. Specify circuit function (English)
2. Draw state transition diagram
3. Write down symbolic state transition table
4. Write down encoded state transition table
5. Derive logic equations
6. Derive circuit diagram

Register to hold state
Combinational Logic for Next State and Outputs


## Another FSM Design Example

## Combination Lock Example



## Combinational Lock STD



## Symbolic State Transition Table

| RESET | ENTER | COM1 | COM2 | Preset State | Next State | OPEN | ERROR |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- | :--- |
| 0 | 0 | $*$ | $*$ | START | START | 0 | 0 |
| 0 | 1 | 0 | $*$ | START | BAD1 | 0 | 0 |
| 0 | 1 | 1 | $*$ | START | OK1 | 0 | 0 |
| 0 | 0 | $*$ | $*$ | OK1 | OK1 | 0 | 0 |
| 0 | 1 | $*$ | 0 | OK1 | BAD2 | 0 | 0 |
| 0 | 1 | $*$ | 1 | OK1 | OK2 | 0 | 0 |
| 0 | $*$ | $*$ | $*$ | OK2 | OK2 | 1 | 0 |
| 0 | 0 | $*$ | $*$ | BAD1 | BAD1 | 0 | 0 |
| 0 | 1 | $*$ | $*$ | BAD1 | BAD2 | 0 | 0 |
| 0 | $*$ | $*$ | $*$ | BAD2 | BAD2 | 0 | 1 |
| 1 | $*$ | $*$ | $*$ | $*$ | START | 0 | 0 |

Decoder logic for checking combination (01,11):


* represents "wild card" - expands to all combinations


## Encoded ST Table

- Assign states:
$S T A R T=000$, OK1 $=001$, OK2 $=011$
BAD1=100, BAD2=101
- Omit reset. Assume that primitive flip-flops has reset input.
- Rows not shown have don't cares in output. Correspond to invalid PS values.

- What are the output functions for OPEN and ERROR?

