
EE141

EECS 151/251A
Spring 2023	
Digital	Design	and	
Integrated	Circuits
Instructor:		
John	Wawrzynek

Lecture 7:
Combinational Logic
part 2, FSMs part 1

EE141

Announcements
❑ HW2 being graded.
❑ HW 3 posted.
❑ Wawrzynek office hours moving to

Thursday 12:30 starting this week.

2

EE141

Outline

3

Combinational Logic:
❑ Boolean Simplification
❑ Multi-level Logic,
❑ NAND/NOR
❑ XOR

Finite State Machines:

EE141
4

Karnaugh Map Method
❑ K-map is a method of representing the TT leading

to simplification.
Note: “gray code” labeling.

EE141
5Spring 2013 EECS150 - Lec23-Boolean Page

K-map Simplification
1. Draw K-map of the appropriate number of variables

(between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1’s.

✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4,
…, 2x2, 2x4, …)

✓ Form as large as possible groups and as few groups as possible.
✓ Groups can overlap (this helps make larger groups)
✓ Remember K-map is periodical in all dimensions (groups can cross

over edges of map and continue on other side)
4. For each group write a product term.

▪ the term includes the “constant” variables (use the
uncomplemented variable for a constant 1 and complemented
variable for constant 0)

5. Form Boolean expression as sum-of-products.

30

EE141
6

Product-of-Sums K-map
1. Form groups of 0’s instead of 1’s.
2. For each group write a sum term.

▪ the term includes the “constant” variables (use the
uncomplemented variable for a constant 0 and complemented
variable for constant 1)

3. Form Boolean expression as product-of-sums.

EE141
7

BCD incrementer example

a b c d w x y z
0 0 0 0 0 0 0 1
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 0 0 1 0 1
0 1 0 1 0 1 1 0
0 1 1 0 0 1 1 1
0 1 1 1 1 0 0 0
1 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0
1 0 1 0 - - - -
1 0 1 1 - - - -
1 1 0 0 - - - -
1 1 0 1 - - - -
1 1 1 0 - - - -
1 1 1 1 - - - -

Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}

EE141
8

BCD Incrementer Example
❑ Note one map for each output variable.
❑ Function includes “don’t cares” (shown as “-” in the

table).
▪ These correspond to places in the function where we

don’t care about its value, because we don’t expect
some particular input patterns.

▪ We are free to assign either 0 or 1 to each don’t care in
the function, as a means to increase group sizes.

❑ In general, you might choose to write product-of-
sums or sum-of-products according to which one
leads to a simpler expression.

EE141
9

BCD incrementer example

w =

x =

y =

z =

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10

EE141
10

Higher Dimensional K-maps

EE141

Boolean Simplification
– Multi-level Logic

EE141
12

Multi-level Combinational Logic
❑ Example: reduced sum-of-products form
 x = adf + aef + bdf + bef + cdf + cef + g
❑ Implementation in 2-levels with gates:

cost: 1 7-input OR, 6 3-input AND
 => ~50 transistors
delay: 3-input AND gate delay + 7-input OR gate delay

Footnote: NAND would be used in
place of all ANDs and ORs.

❑ Factored form:
 x = (a + b +c)(d + e)f + g

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND
 => ~20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Which is faster?
In general: Using multiple levels (more than 2) will reduce the

cost. Sometimes also delay.
Sometimes a tradeoff between cost and delay.

EE141
13

Multi-level Combinational Logic
Another Example: F = abc + abd +a'c'd' + b'c'd'
 let x = ab y = c+d
 f = xy + x'y'

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.

EE141
14

NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review:
 (a + b)' = a' b' (a b)' = a' + b'
 a + b = (a' b')' (a b) = (a' + b')'

push bubbles or introduce in pairs or remove pairs:
(x')' = x.

EE141
15

NAND-NAND & NOR-NOR Networks
❑ Mapping from AND/OR to NAND/NAND

EE141
16

Multi-level Networks
Convert to NANDs:
F = a(b + cd) + bc'

EE141
17

EXOR Function Implementations
Parity, addition mod 2

x ⊕ y = x’y + xy’
 x y xor xnor
 0 0 0 1
 0 1 1 0
 1 0 1 0
 1 1 0 1

Another approach:

EE141

Finite State Machines

EE141

Finite State Machines (FSMs)
❑ FSMs:

❑ Can model behavior of any
sequential circuit

❑ Useful representation for
designing sequential circuits

❑ As with all sequential
circuits: output depends on
present and past inputs
❑ effect of past inputs

represented by the
current state

❑ Behavior is represented by
State Transition Diagram:
▪ traverse one edge per clock

cycle.

19

EE141

FSM Implementation

❑ Flip-flops form state register

❑ number of states ≤ 2number of flip-flops

❑ CL (combinational logic) calculates next state and output
❑ Remember: The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog. Now we
learn how to design “by hand” to the gate level.

20

EE141

FSM Example: Parity Checker
A string of bits has “even parity” if the number of 1's in the string is even.
❑ Design a circuit that accepts a infinite serial stream of bits, and outputs a 0

if the parity thus far is even and outputs a 1 if odd:

Next we take this example through the “formal design process”. But
first, can you guess a circuit that performs this function?

21

EE141

By-hand Design Process (a)

“State Transition Diagram”
▪ circuit is in one of two

“states”.
▪ transition on each cycle

with each new input, over
exactly one arc (edge).

▪ Output depends on which
state the circuit is in.

22

EE141

By-hand Design Process (b)
State Transition Table:

Invent a code to represent states:
Let 0 = EVEN state, 1 = ODD state

present next
state OUT IN state

 EVEN 0 0 EVEN
 EVEN 0 1 ODD
 ODD 1 0 ODD
 ODD 1 1 EVEN

present state (ps) OUT IN next state (ns)
 0 0 0 0
 0 0 1 1
 1 1 0 1
 1 1 1 0

Derive logic equations from
table (how?):

OUT = PS
NS = PS xor IN

23

EE141

By-hand Design Process (c)

❑ Circuit Diagram:

▪ XOR gate for NS
calculation

▪ Flip-Flop to hold present
state

▪ no logic needed for output
in this example.

Logic equations from table:
OUT = PS
NS = PS xor IN

nsps

24

EE141

“Formal” By-hand Design Process
Review of Design Steps:

 1. Specify circuit function (English)
 2. Draw state transition diagram
 3. Write down symbolic state transition table
 4. Write down encoded state transition table
 5. Derive logic equations
 6. Derive circuit diagram
 Register to hold state
 Combinational Logic for Next State and Outputs

25

EE141

Another FSM Design
Example

EE141

Combination Lock Example

❑ Used to allow entry to a locked room:
2-bit serial combination. Example 01,11:
 1. Set switches to 01, press ENTER
 2. Set switches to 11, press ENTER
 3. OPEN is asserted (OPEN=1).
 If wrong code, ERROR is asserted (after second combo word entry).
 Press Reset at anytime to try again.

27

EE141

Combinational Lock STD

Assume the ENTER
button when pressed
generates a pulse for
only one clock cycle.

28

EE141

Symbolic State Transition Table
RESET ENTER COM1 COM2 Preset State Next State OPEN ERROR
0 0 * * START START 0 0
0 1 0 * START BAD1 0 0
0 1 1 * START OK1 0 0
0 0 * * OK1 OK1 0 0
0 1 * 0 OK1 BAD2 0 0
0 1 * 1 OK1 OK2 0 0
0 * * * OK2 OK2 1 0
0 0 * * BAD1 BAD1 0 0
0 1 * * BAD1 BAD2 0 0
0 * * * BAD2 BAD2 0 1
1 * * * * START 0 0

Decoder logic for checking
combination (01,11):

29* represents “wild card” - expands to all combinations

EE141

Encoded ST Table
• Assign states:
START=000, OK1=001, OK2=011
BAD1=100, BAD2=101
• Omit reset. Assume that primitive flip-flops has reset

input.
• Rows not shown have don't cares in output.

Correspond to invalid PS values.

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0

30

