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Announcements
❑ HW2 being graded. 
❑ HW 3 posted. 
❑ Wawrzynek office hours moving to 

Thursday 12:30 starting this week.
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Outline

3

Combinational Logic: 
❑ Boolean Simplification 
❑ Multi-level Logic,  
❑ NAND/NOR 
❑ XOR 

Finite State Machines: 
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Karnaugh Map Method
❑ K-map is a method of representing the TT leading 

to simplification.
Note: “gray code” labeling.
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K-map Simplification
1. Draw K-map of the appropriate number of variables 

(between 2 and 6) 
2. Fill in map with function values from truth table. 
3. Form groups of 1’s. 

✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, 
…, 2x2, 2x4, …) 

✓ Form as large as possible groups and as few groups as possible. 
✓ Groups can overlap (this helps make larger groups) 
✓ Remember K-map is periodical in all dimensions (groups can cross 

over edges of map and continue on other side) 
4. For each group write a product term.  

▪ the term includes the “constant” variables (use the 
uncomplemented variable for a constant 1 and complemented 
variable for constant 0) 

5. Form Boolean expression as sum-of-products.
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Product-of-Sums K-map
1. Form groups of 0’s instead of 1’s. 
2. For each group write a sum term.  

▪ the term includes the “constant” variables (use the 
uncomplemented variable for a constant 0 and complemented 
variable for constant 1) 

3. Form Boolean expression as product-of-sums.
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BCD incrementer example

a b c d   w x y z 
0 0 0 0   0 0 0 1 
0 0 0 1   0 0 1 0 
0 0 1 0   0 0 1 1 
0 0 1 1   0 1 0 0 
0 1 0 0   0 1 0 1 
0 1 0 1   0 1 1 0 
0 1 1 0   0 1 1 1 
0 1 1 1   1 0 0 0 
1 0 0 0   1 0 0 1 
1 0 0 1   0 0 0 0 
1 0 1 0   -  -  -  - 
1 0 1 1   -  -  -  - 
1 1 0 0   -  -  -  - 
1 1 0 1   -  -  -  - 
1 1 1 0   -  -  -  - 
1 1 1 1   -  -  -  -

Binary Coded Decimal

1
0

2
3
4
5
6
7
8
9

+1

4

4

{a,b,c,d}

{w,x,y,z}
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BCD Incrementer Example
❑ Note one map for each output variable. 
❑ Function includes “don’t cares” (shown as “-” in the 

table). 
▪ These correspond to places in the function where we 

don’t care about its value, because we don’t expect 
some particular input patterns. 

▪  We are free to assign either 0 or 1 to each don’t care in 
the function, as a means to increase group sizes. 

❑ In general, you might choose to write product-of-
sums or sum-of-products according to which one 
leads to a simpler expression.
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BCD incrementer example

w =   

x = 

y =  

z = 

00 01 11 10 00 01 11 10

00 01 11 1000 01 11 10
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Higher Dimensional K-maps
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Boolean Simplification 
– Multi-level Logic
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Multi-level Combinational Logic
❑ Example: reduced sum-of-products form 
 x = adf + aef + bdf + bef + cdf + cef + g 
❑ Implementation in 2-levels with gates: 

cost: 1 7-input OR, 6 3-input AND  
   => ~50 transistors 
delay: 3-input AND gate delay + 7-input OR gate delay

Footnote: NAND would be used in 
place of all ANDs and ORs.

❑ Factored form: 
 x = (a + b +c)(d + e)f + g 

cost: 1 3-input OR, 2 2-input OR, 1 3-input AND 
      => ~20 transistors 
delay: 3-input OR + 3-input AND + 2-input OR 

Which is faster? 
In general: Using multiple levels (more than 2) will reduce the 

cost.  Sometimes also delay. 
Sometimes a tradeoff between cost and delay.
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Multi-level Combinational Logic
Another Example:  F = abc + abd +a'c'd' + b'c'd'   
     let x = ab  y = c+d 
       f = xy + x'y' 

No convenient hand methods exist for multi-level logic simplification: 
a) CAD Tools use sophisticated algorithms and heuristics 

Guess what?  These problems tend to be NP-complete 
b) Humans and tools often exploit some special structure (example adder)

Incorporates fanout.
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NAND-NAND & NOR-NOR Networks
DeMorgan's Law Review: 
  (a + b)' = a' b'        (a b)' = a' + b' 
   a + b   = (a' b')'      (a b)  = (a' + b')' 

push bubbles or introduce in pairs or remove pairs:         
(x')' = x.
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NAND-NAND & NOR-NOR Networks
❑ Mapping from AND/OR to NAND/NAND
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Multi-level Networks
Convert to NANDs: 
F = a(b + cd) + bc'
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EXOR Function Implementations
Parity, addition mod 2 

x ⊕ y = x’y + xy’ 
  x y  xor  xnor 
 0 0    0    1     
 0 1    1     0   
 1 0    1     0 
 1 1    0     1       

Another approach:
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Finite State Machines
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Finite State Machines (FSMs)
❑ FSMs: 

❑ Can model behavior of any 
sequential circuit 

❑ Useful representation for 
designing sequential circuits 

❑ As with all sequential 
circuits: output depends on 
present and past inputs 
❑ effect of past inputs 

represented by the 
current state 

❑ Behavior is represented by 
State Transition Diagram: 
▪ traverse one edge per clock 

cycle.
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FSM Implementation

❑ Flip-flops form state register 

❑ number of states ≤ 2number of flip-flops 

❑ CL (combinational logic) calculates next state and output 
❑ Remember:  The FSM follows exactly one edge per cycle.

Later we will learn how to implement in Verilog.  Now we 
learn how to design “by hand” to the gate level.
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FSM Example: Parity Checker
A string of bits has “even parity” if the number of 1's in the string is even. 
❑ Design a circuit that accepts a infinite serial stream of bits, and outputs a 0 

if the parity thus far is even and outputs a 1 if odd:

Next we take this example through the “formal design process”.  But 
first, can you guess a circuit that performs this function?
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By-hand Design Process (a)

“State Transition Diagram” 
▪ circuit is in one of two 

“states”. 
▪ transition on each cycle 

with each new input, over 
exactly one arc (edge). 

▪ Output depends on which 
state the circuit is in.
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By-hand Design Process (b)
State Transition Table: 

Invent a code to represent states: 
Let 0 = EVEN state, 1 = ODD state

present                   next 
state       OUT  IN   state 

 EVEN       0     0    EVEN 
 EVEN       0     1     ODD 
 ODD         1     0     ODD 
 ODD         1     1    EVEN

present state (ps)   OUT   IN   next state (ns) 
            0                    0      0                0 
            0                    0      1                1 
            1                    1      0                1 
            1                    1      1                0

Derive logic equations from 
table (how?): 

OUT = PS 
NS = PS xor IN
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By-hand Design Process (c)

❑ Circuit Diagram: 

▪ XOR gate for NS 
calculation 

▪ Flip-Flop to hold present 
state 

▪ no logic needed for output 
in this example.

Logic equations from table: 
OUT = PS 
NS = PS xor IN

nsps
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“Formal” By-hand Design Process
Review of Design Steps: 

 1. Specify circuit function (English) 
 2. Draw state transition diagram 
 3. Write down symbolic state transition table 
 4. Write down encoded state transition table 
 5. Derive logic equations 
 6. Derive circuit diagram 
  Register to hold state 
  Combinational Logic for Next State and Outputs
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Another FSM Design 
Example
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Combination Lock Example

❑ Used to allow entry to a locked room: 
2-bit serial combination.  Example 01,11: 
 1. Set switches to 01, press ENTER 
 2. Set switches to 11, press ENTER 
 3. OPEN is asserted (OPEN=1). 
  If wrong code, ERROR is asserted (after second combo word entry). 
  Press Reset at anytime to try again.
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Combinational Lock STD

Assume the ENTER 
button when pressed 
generates a pulse for 
only one clock cycle.
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Symbolic State Transition Table
RESET  ENTER  COM1  COM2  Preset State         Next State  OPEN ERROR 
0 0 * * START  START 0 0 
0 1 0 * START  BAD1 0 0 
0 1 1 * START  OK1 0 0 
0 0 * * OK1  OK1 0 0 
0 1 * 0 OK1  BAD2 0 0 
0 1 * 1 OK1  OK2 0 0 
0 * * * OK2  OK2 1 0 
0 0 * * BAD1  BAD1 0 0 
0 1 * * BAD1  BAD2 0 0 
0 * * * BAD2  BAD2 0 1 
1 * * * *  START 0 0

Decoder logic for checking 
combination (01,11):

29* represents “wild card” - expands to all combinations
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Encoded ST Table
• Assign states: 
START=000, OK1=001, OK2=011 
BAD1=100, BAD2=101 
• Omit reset.  Assume that primitive flip-flops has reset 

input. 
• Rows not shown have don't cares in output.  

Correspond to invalid PS values. 

• What are the output functions for OPEN and ERROR?

NS2 NS1 NS0
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