

EECS 151/251A Spring 2023 Digital Design and Integrated Circuits

Instructor:
John Wawrzynek
Lecture 6:
Combinational Logic representations

Announcements

- PS 1 being graded, solution posted tomorrow
- PS 2 due Monday
- HW 3 out tomorrow.
- Wawrzynek office hours moving to Thursday 12:30 starting next week.

Outline

- Three representations for combinational logic:
- truth tables,
- graphical (logic gates), and
- algebraic equations
- Boolean Algebra
- Boolean Simplification
- Multi-level Logic,
- NAND/NOR
- $X O R$

Representations of Combinational Logic

Combinational Logic (CL) Defined

$y_{i}=f_{i}(x 0, \ldots, x n-1)$, where x, y take on values $\{0,1\}$. Y is a function of only X, i.e., it is a "pure function".

- If we change X then Y will change immediately (well almost!).
- There is an implementation dependent delay from X to Y .
- Y is a function of nothing other than the current inputs values.

CL Block Example \#1

Boolean Equation:

$$
\begin{aligned}
y_{0}= & {\left[x_{0} \operatorname{AND} \operatorname{not}\left[x_{1}\right]\right] } \\
& O R\left[\operatorname{not}\left[x_{0}\right] \operatorname{AND} x_{1}\right] \\
y_{0}= & x_{0} x_{1}{ }^{\prime}+x_{0}{ }^{\prime} x_{1}
\end{aligned}
$$

Truth Table Description:

\section*{| x 0 | x | y |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |}

Gate Representation:

Boolean Algebra/Logic Circuits

- Why are they called "logic circuits"?

- Logic: The study of the principles of reasoning.
- The 19th Century Mathematician, George Boole, developed a math. system (algebra) involving logic, Boolean Algebra.
- His variables took on TRUE, FALSE
- Later Claude Shannon (father of information theory) showed (in his Master's thesis!) how to map Boolean Algebra to digital circuits:
- Primitive functions of Boolean Algebra:

$\mathrm{a} b$	AND
00	0
01	0
10	0
11	1

$a b$	OR	
0	0	0
0	1	1
1	0	1
1	1	1

Other logic functions of 2 variables (x, y)

Look at NOR and NAND:

- Theorem: Any Boolean function that can be expressed as a truth table can be expressed using NAND and NOR.
- Proof sketch:

- How would you show that either NAND or NOR is sufficient?

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

Full-adder (FA) cell example

- Graphical Representation of FA-cell

$$
\begin{aligned}
& r_{i}=a_{i} \oplus b_{i} \oplus c_{i n} \\
& c_{\text {out }}=a_{i} c_{\text {in }}+a_{i} b_{i}+b_{i} c_{i n}
\end{aligned}
$$

- Alternative Implementation (with only 2 -input gates):

$$
\begin{aligned}
& r_{i}=\left[a_{i} \oplus b_{i}\right] \oplus c_{i n} \\
& c_{\text {out }}=c_{i n}\left[a_{i}+b_{i}\right]+a_{i} b_{i}
\end{aligned}
$$

Boolean Algebra

Boolean Algebra

Set of elements B, binary operators $\{+, \bullet\}$, unary
operation $\{'\}$, such that the following axioms hold :

1. B contains at least two elements a, b such that $a \neq b$.
2. Closure: a, b in B,
$a+b$ in $B, a \bullet b$ in B, a^{\prime} in B.
3. Communitive laws:

$$
a+b=b+a, \quad a \bullet b=b \bullet a
$$

4. Identities: 0,1 in B

$$
a+0=a, a \cdot 1=a .
$$

$$
B=\{0,1\},+=\mathrm{OR}, \bullet=\mathrm{AND},^{\prime}=\mathrm{NOT}
$$ is a valid Boolean Algebra.

0010	0010
011	010
101	10
111	111

5. Distributive laws :

$$
a+(b \bullet c)=(a+b) \bullet(a+c), a \bullet(b+c)=a \bullet b+a \bullet c .
$$

6. Complement :

$$
a+a^{\prime}=1, a \cdot a^{\prime}=0
$$

Some Laws (theorems) of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and interchanging 0 s and 1 s (the variables are left unchanged).

$$
\left\{F\left(x_{1}, x_{2}, \ldots, x_{n}, 0,1,+, \bullet\right)\right\}^{D}=\left\{F\left(x_{1}, x_{2}, \ldots, x_{n}, 1,0, \bullet,+\right)\right\}
$$

Any law that is true for an expression is also true for its dual.
Operations with 0 and 1:

$$
\begin{array}{ll}
x+0=x & x * 1=x \\
x+1=1 & x * 0=0
\end{array}
$$

Idempotent Law:

$$
x+x=x \quad x \quad x=x
$$

Involution Law:

$$
\left[x^{\prime}\right]^{\prime}=x
$$

Laws of Complementarity:

$$
x+x^{\prime}=1 \quad x x^{\prime}=0
$$

Commutative Law:

$$
x+y=y+x \quad x \quad y=y x
$$

Some Laws (theorems) of Boolean Algebra (cont.)

Associative Laws:

$$
(x+y)+z=x+(y+z) \quad x y z=x(y z)
$$

Distributive Laws:

$$
x(y+z)=(x y)+(x z)
$$

$$
x+(y z)=(x+y)(x+z)
$$

"Simplification" Theorems:

$$
\begin{array}{ll}
x y+x y^{\prime}=x & (x+y)\left(x+y^{\prime}\right)=x \\
x+x y=x & x(x+y)=x \\
x+x^{\prime} y=x+y & x\left(x^{\prime}+y\right)=x y
\end{array}
$$

DeMorgan's Law:

$$
(x+y+z+\ldots)^{\prime}=x^{\prime} y^{\prime} z^{\prime} \quad(x y z \ldots)^{\prime}=x^{\prime}+y^{\prime}+z^{\prime}
$$

Theorem for Multiplying and Factoring:

$$
(x+y)\left(x^{\prime}+z\right)=x z+x^{\prime} y
$$

Consensus Theorem:

$$
\begin{gathered}
x y+y z+x^{\prime} z=(x+y)(y+z)\left(x^{\prime}+z\right) \\
x y+x^{\prime} z=(x+y)\left(x^{\prime}+z\right)
\end{gathered}
$$

DeMorgan's Law

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

Canonical Forms

- Standard form for a Boolean expression - unique algebraic expression directly from a true table (TT) description.
- Two Types:
* Sum of Products [SOP]
* Product of Sums [POS]
- Sum of Products [disjunctive normal form, minterm expansion). Example:

Minterms	a	b	c	f	f
	$a^{\prime} b^{\prime} c '$	0	0	0	0

One product [and] term for each 1 in f: $f=a{ }^{\prime} b c+a b \prime c^{\prime}+a b \prime c+a b c{ }^{\prime}+a b c$ $f^{\prime}=a b^{\prime} c^{\prime}+a b^{\prime} c+a b^{\prime}$
(enumerate all the ways the
function could evaluate to 1)

What is the cost?

Sum of Products (cont.)

Canonical Forms are usually not minimal:
Our Example:

$$
\begin{array}{rlrl}
f & =a ' b c+a b^{\prime} c^{\prime}+a b ' c+a b c^{\prime}+a b c & \left(x y^{\prime}+x y=x\right) \\
& =a^{\prime} b c+a b^{\prime}+a b \\
& =a^{\prime} b c+a \\
& =a+b c & \left(x^{\prime} y+x=y+x\right)
\end{array}
$$

$$
f^{\prime}=a^{\prime} b^{\prime} c^{\prime}+a^{\prime} b^{\prime} c+a^{\prime} b c^{\prime}
$$

$$
=a^{\prime} b^{\prime}+a^{\prime} b c^{\prime}
$$

$$
=a^{\prime}\left(b^{\prime}+b c^{\prime}\right)
$$

$$
=a^{\prime}\left(b^{\prime}+c^{\prime}\right)
$$

$$
=a^{\prime} b^{\prime}+a^{\prime} c^{\prime}
$$

Canonical Forms

- Product of Sums [conjunctive normal form, maxterm expansion].

Example:
maxterms
$a+b+c$
$a+b+c^{\prime}$
$a+b^{\prime}+c$
$a+b^{\prime}+c^{\prime}$
$a^{\prime}+b+c$
$a^{\prime}+b+c^{\prime}$
$a^{\prime}+b^{\prime}+c$
$a^{\prime}+b^{\prime}+c^{\prime}$

a	b	c	f	f	
0	0	0	0	1	
0	0	1	0	1	One sum (or) term for each 0 in $f:$
0	1	0	0	1	$f=(a+b+c)\left(a+b+c^{\prime}\right)\left(a+b^{\prime}+c\right)$
0	1	1	1	0	$f^{\prime}=\left(a+b^{\prime}+c^{\prime}\right)\left(a^{\prime}+b+c\right)\left(a^{\prime}+b+c^{\prime}\right)$
1	0	0	1	0	$\left(a^{\prime}+b^{\prime}+c\right)\left(a+b+c^{\prime}\right)$
1	0	1	1	0	(enumerate all the ways the
1	1	0	1	0	function could evaluate to 0)
1	1	1	1	0	

What is the cost?

Boolean Simplification

Algebraic Simplification Example

Ex: full adder (FA) carry out function (in canonical form):
Cout $=a^{\prime} b c+a b \prime c+a b c$ ' $+a b c$

$c i$	a	\square	r	$c 0$
\square	\square	\square	\square	\square
\square	\square	1	1	\square
\square	1	\square	1	\square
\square	1	1	\square	1
1	\square	\square	1	\square
1	\square	1	\square	1
1	1	\square	\square	1
1	1	1	1	1

Algebraic Simplification

$$
\begin{aligned}
\text { Cout } & =a^{\prime} b c+a b b^{\prime} c+a b c^{\prime}+a b c \\
& =a^{\prime} b c+a b \prime c+a b c^{\prime}+a b c+a b c \\
& =a a^{\prime} b c+a b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =\left[a^{\prime}+a\right] b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =[1] b c+a b^{\prime} c+a b c^{\prime}+a b c \\
& =b c+a b^{\prime} c+a b c^{\prime}+a b c+a b c \\
& =b c+a b b^{\prime} c+a b c+a b c^{\prime}+a b c \\
& =b c+a\left[b^{\prime}+b\right] c+a b c^{\prime}+a b c \\
& =b c+a[1] c+a b c^{\prime}+a b c \\
& =b c+a c+a b\left[c^{\prime}+c\right] \\
& =b c+a c+a b[1] \\
& =b c+a c+a b
\end{aligned}
$$

Outline for remaining CL Topics

- K-map method of two-level logic simplification
- Multi-level Logic
- NAND/NOR networks
\square EXOR revisited

Algorithmic Two-level Logic Simplification

Key tool: The Uniting Theorem:

$$
x y^{\prime}+x y=x\left(y^{\prime}+y\right)=x(1)=x
$$

$a b$	f
00	0
01	0
10	1
11	1

$f=a b^{\prime}+a b=a\left(b^{\prime}+b\right)=a$
b values change within the on-set rows a values don't change
b is eliminated, a remains

${ }^{a b}{ }^{\text {g }}$	$g=a^{\prime} b^{\prime}+a b^{\prime}=\left(a^{\prime}+a\right) b^{\prime}=b^{\prime}$
001	
010	b values stay the same
101	a values changes
110	b' remains, a is eliminated

Karnaugh Map Method

- K-map is an alternative method of representing the TT and to help visual the adjacencies.

Note: "gray code" labeling.

$5 \& 6$ variable k-maps possible

Karnaugh Map Method

- Adjacent groups of 1's represent product terms

K-map Simplification

1. Draw K-map of the appropriate number of variables (between 2 and 6)
2. Fill in map with function values from truth table.
3. Form groups of 1 's.
\checkmark Dimensions of groups must be even powers of two (1x1, $1 \times 2,1 \times 4$, $\ldots, 2 \times 2,2 \times 4, \ldots$)
\checkmark Form as large as possible groups and as few groups as possible.
\checkmark Groups can overlap (this helps make larger groups)
\checkmark Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
4. For each group write a product term.

- the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)

5. Form Boolean expression as sum-of-products.

K-maps (cont.)

```
        ab
c 00 01 11 10
```



```
    f=b'c' + ac
```

0010	0	1
0101	0	0
1111	1	7
$10 \square 1$		

$\mathrm{f}=\mathrm{c}+\mathrm{a} \mathrm{bd}+\mathrm{b}^{\prime} \mathrm{d}^{\prime}$
(bigger groups are better)

Product-of-Sums K-map

1. Form groups of 0's instead of 1's.
2. For each group write a sum term.

- the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)

3. Form Boolean expression as product-of-sums.

BCD incrementer example

Binary Coded Decimal

BCD Incrementer Example

- Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
- These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
- We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.

BCD incrementer example

W

	00011110			
00	0	0	-	1
01	0	0	-	0
11	0	1	-	-
10	0	0	-	-

00	0	1	-	0
01	0	1	-	0
11	1	0	-	-
10	0	1	-	-

ab				
00011110				
00	0	0	-	0
01	1	1	-	0
11	0	0	-	-
10	1	1	-	-

ab Z $\quad \mathrm{y}=$					
		01	11		
00	1	1	-	1	$z=$
01	0	0	-	0	
11	0	0	-	-	
10	1	1	-	-	

Higher Dimensional K-maps

Boolean Simplification - Multi-level Logic

Multi-level Combinational Logic

- Example: reduced sum-of-products form x = adf + aef + bdf + bef + cdf + cef + g
- Implementation in 2-levels with gates:
cost: 17 -input OR, 63 -input AND
=> ~50 transistors
delay: 3-input OR gate delay + 7-input AND gate delay

- Factored form:
$x=(a+b+c)(d+e) f+g$
cost: 13 -input OR, 2 2-input OR, 1 3-input AND => ~20 transistors
delay: 3-input OR + 3-input AND + 2-input OR

Which is faster?

Footnote: NAND would be used in place of all ANDs and ORs.

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay.
Sometimes a tradeoff between cost and delay.

Multi-level Combinational Logic

Another Example: $\mathrm{F}=\mathrm{abc}+\mathrm{abd}+\mathrm{a} \mathrm{c}^{\prime} \mathrm{d}^{\prime}+\mathrm{b} \mathrm{b}^{\prime} \mathrm{d}^{\prime}$

$$
\text { let } x=a b \quad y=c+d
$$

$$
f=x y+x^{\prime} y^{\prime}
$$

No convenient hand methods exist for multi-level logic simplification:
a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete
b) Humans and tools often exploit some special structure (example adder)

NAND-NAND \& NOR-NOR Networks

DeMorgan's Law Review:

$$
\begin{array}{ll}
(a+b)^{\prime}=a^{\prime} b^{\prime} & (a b)^{\prime}=a^{\prime}+b^{\prime} \\
a+b=\left(a^{\prime} b^{\prime}\right)^{\prime} & (a b)=\left(a^{\prime}+b^{\prime}\right)^{\prime}
\end{array}
$$

push bubbles or introduce in pairs or remove pairs: $\left(x^{\prime}\right)^{\prime}=x$.

NAND-NAND \& NOR-NOR Networks

\square Mapping from AND/OR to NAND/NAND

Multi-level Networks

Convert to NANDs:
$F=a(b+c d)+b c '$

EXOR Function Implementations

Parity, addition mod 2

$$
x \oplus y=x^{\prime} y+x y^{\prime}
$$

x	y	xor
0	0	0
0	1	1
0	1	1
1	0	1
1	1	0
1	0	1

Another approach:

