

EECS 151/251A Spring 2023 Digital Design and Integrated Circuits

Instructor: John Wawrzynek

Lecture 6: Combinational Logic representations

Announcements

- PS 1 being graded, solution posted tomorrow
- PS 2 due Monday
- □ HW 3 out tomorrow.
- Wawrzynek office hours moving to Thursday 12:30 starting next week.

Outline

Three representations for combinational logic:

- truth tables,
- graphical (logic gates), and
- algebraic equations
- Boolean Algebra
- Boolean Simplification
- □ Multi-level Logic,
- □ NAND/NOR

Representations of Combinational Logic

Combinational Logic (CL) Defined

 $y_i = f_i(x0, ..., xn-1)$, where x, y take on values {0,1}. Y is a function of only X, i.e., it is a "pure function".

If we change X then Y will change immediately (well almost!).
 There is an *implementation dependent* delay from X to Y.
 Y is a function of nothing other than the current inputs values.

Boolean Algebra/Logic Circuits

□ Why are they called "logic circuits"?

- □ Logic: The study of the principles of reasoning.
- The 19th Century Mathematician, George Boole, developed a math. system (algebra) involving logic, Boolean Algebra.
- His variables took on TRUE, FALSE
- Later Claude Shannon (father of information theory) showed (in his Master's thesis!) how to map Boolean Algebra to digital circuits:
- Primitive functions of Boolean Algebra:

Other logic functions of 2 variables (x,y)

- Theorem: Any Boolean function that can be expressed as a truth table can be expressed using NAND and NOR.
 - Proof sketch:

$$- = NOT \qquad = - = AND$$
$$= - = OR$$

How would you show that either NAND or NOR is sufficient?

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

Full-adder (FA) cell example

Graphical Representation of FA-cell

 $r_i = a_i \oplus b_i \oplus c_{in}$ $c_{out} = a_i c_{in} + a_i b_i + b_i c_{in}$

• Alternative Implementation (with only 2-input gates):

$$\mathbf{r_i} = (\mathbf{a_i} \oplus \mathbf{b_i}) \oplus \mathbf{c_{in}}$$

$$c_{out} = c_{in}(a_i + b_i) + a_i b_i$$

Boolean Algebra

Boolean Algebra

Set of elements *B*, binary operators $\{+, \bullet\}$, unary operation $\{'\}$, such that the following axioms hold :

- 1. *B* contains at least two elements *a*, *b* such that $a \neq b$.
- 2. Closure : a, b in B,

a + b in B, $a \bullet b$ in B, a' in B.

3. Communitive laws :

$$a+b=b+a, a \bullet b=b \bullet a.$$

4. Identities : 0, 1 in B

 $a + 0 = a, \quad a \bullet 1 = a.$

5. Distributive laws :

$$a + (b \bullet c) = (a + b) \bullet (a + c), \ a \bullet (b + c) = a \bullet b + a \bullet c.$$

6. Complement :

$$a + a' = 1, \ a \bullet a' = 0$$

Some Laws (theorems) of Boolean Algebra

Duality: A dual of a Boolean expression is derived by interchanging OR and AND operations, and interchanging 0s and 1s (the variables are left unchanged).

$$\{F(x_1, x_2, ..., x_n, 0, 1, +, \bullet)\}^D = \{F(x_1, x_2, ..., x_n, 1, 0, \bullet, +)\}$$

Any law that is true for an expression is also true for its dual.

Operations with 0 and 1: x + 0 = x x * 1 = x x + 1 = 1 x * 0 = 0Idempotent Law: x + x = x x x = xInvolution Law: (x')' = xLaws of Complementarity: x + x' = 1 x x' = 0Commutative Law: x + y = y + x x y = y x

Some Laws (theorems) of Boolean Algebra (cont.)

Associative Laws: (x + y) + z = x + (y + z)

Distributive Laws: x (y + z) = (x y) + (x z)

"Simplification" Theorems: x y + x y' = x x + x y = x x + x'y = x + y

DeMorgan's Law: (x + y + z + ...)' = x'y'z' x y z = x (y z)

$$x + (y z) = (x + y)(x + z)$$

(x + y) (x + y') = x x (x + y) = x x(x' + y) = xy

(x y z ...)' = x' + y' +z'

Theorem for Multiplying and Factoring: (x + y) (x' + z) = x z + x' yConsensus Theorem: x y + y z + x' z = (x + y) (y + z) (x' + z)x y + x' z = (x + y) (x' + z)

DeMorgan's Law

(x + y)' = x' y'	Exhaustive Proof	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(x y)' = x' + y'	Exhaustive Proof	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Relationship Among Representations

* Theorem: Any Boolean function that can be expressed as a truth table can be written as an expression in Boolean Algebra using AND, OR, NOT.

How do we convert from one to the other?

Canonical Forms

Standard form for a Boolean expression - unique algebraic expression directly from a true table (TT) description.

Two Types:

- * Sum of Products (SOP)
- * Product of Sums (POS)
- <u>Sum of Products</u> (disjunctive normal form, <u>minterm</u> expansion). Example:

Minterms	a b c	ff'	
a'b'c'	0 0 0	0 1	
a'b'c	0 0 1	01	One product (and) term for each 1 in f:
a'bc'	0 1 0	01	f = a'bc + ab'c' + ab'c + abc' + abc
a'bc	011	10	f' = a'b'c' + a'b'c + a'bc'
ab'c'	100	10	
ab'c	101	10	(enumerate all the ways the
abc'	1 1 0	10	function could evaluate to 1)
abc	1 1 1	10	

What is the cost?

Sum of Products (cont.)

Canonical Forms are usually not minimal:

Our Example:

f = a'bc + ab'c' + ab'c + abc' + abc (xy' + xy = x)= a'bc + ab' + ab = a'bc + a (x'y + x = y + x) = a + bc

```
f' = a'b'c' + a'b'c + a'bc'
= a'b' + a'bc'
= a' (b' + bc')
= a' (b' + c')
= a'b' + a'c'
```

Canonical Forms

• <u>Product of Sums</u> (conjunctive normal form, <u>maxterm</u> expansion). Example:

maxterms	abc f f'
a+b+c	0 0 0 1
a+b+c ′	0 0 1 0 1 One sum (or) term for each 0 in f:
a+b′+c	0 1 0 0 1 $f = (a+b+c)(a+b+c')(a+b'+c)$
a+b '+c '	0 1 1 1 0 $f' = (a+b'+c')(a'+b+c)(a'+b+c') (a'+b'+c)(a+b+c')$
a '+b+c	100 10
a '+b+c '	1 0 1 1 0 <i>(enumerate all the ways the</i>
a '+b '+c	1 1 0 1 0 function could evaluate to 0)
a '+b '+c '	1 1 1 1 0

What is the cost?

Boolean Simplification

Algebraic Simplification Example

- Ex: full adder (FA) carry out function (in canonical form):
- Cout = a'bc + ab'c + abc' + abc

Algebraic Simplification

Cout = a'bc + ab'c + abc' + abc

- = a'bc + ab'c + abc' + abc + abc
- = a'bc + abc + ab'c + abc' + abc
- = (a' + a)bc + ab'c + abc' + abc
- = [1]bc + ab'c + abc' + abc
- = bc + ab'c + abc' + abc + abc
- = bc + ab'c + abc + abc' + abc
- = bc + a(b' +b)c + abc' +abc
- = bc + a[1]c + abc' + abc
- = bc + ac + ab[c' + c]
- = bc + ac + ab[1]
- = bc + ac + ab

Outline for remaining CL Topics

- K-map method of two-level logic simplification
- Multi-level Logic
- NAND/NOR networks
- EXOR revisited

Algorithmic Two-level Logic Simplification

Key tool: <u>The Uniting Theorem</u>:

$$xy' + xy = x(y' + y) = x(1) = x$$

ab	f	f = ab' + ab = a(b'+b) = a
00 01	0	b values change within the on-set rows
		a values don't change
10 11	1	b is eliminated, a remains

ab_| g

0

1

- b values stay the same
- a values changes
 - b' remains, a is eliminated

Karnaugh Map Method

K-map is an alternative method of representing the TT and to help visual the adjacencies.

5 & 6 variable k-maps possible

Karnaugh Map Method

Adjacent groups of 1's represent product terms

K-map Simplification

- 1. Draw K-map of the appropriate number of variables (between 2 and 6)
- 2. Fill in map with function values from truth table.
- 3. Form groups of 1's.
 - ✓ Dimensions of groups must be even powers of two (1x1, 1x2, 1x4, ..., 2x2, 2x4, ...)
 - ✓ Form as large as possible groups and as few groups as possible.
 - ✓ Groups can overlap (this helps make larger groups)
 - ✓ Remember K-map is periodical in all dimensions (groups can cross over edges of map and continue on other side)
- 4. For each group write a product term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 1 and complemented variable for constant 0)
- 5. Form Boolean expression as sum-of-products.

Product-of-Sums K-map

- 1. Form groups of 0's instead of 1's.
- 2. For each group write a sum term.
 - the term includes the "constant" variables (use the uncomplemented variable for a constant 0 and complemented variable for constant 1)
- 3. Form Boolean expression as product-of-sums.

f = (b' + c + d)(a' + c + d')(b + c + d')

BCD incrementer example

Binary Coded Decimal

a b c d 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1	W X Y Z 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
---	---

{a,b,c,d} 4 +1 4 { w,x,y,z}

BCD Incrementer Example

- □ Note one map for each output variable.
- Function includes "don't cares" (shown as "-" in the table).
 - These correspond to places in the function where we don't care about its value, because we don't expect some particular input patterns.
 - We are free to assign either 0 or 1 to each don't care in the function, as a means to increase group sizes.
- In general, you might choose to write product-ofsums or sum-of-products according to which one leads to a simpler expression.

BCD incrementer example

-

-

_

_

-

_

-

_

_

-

z =

Higher Dimensional K-maps

Boolean Simplification – Multi-level Logic

Multi-level Combinational Logic

□ Factored form:

x = (a + b +c) (d + e) f + g cost: 1 3-input OR, 2 2-input OR, 1 3-input AND => ~20 transistors delay: 3-input OR + 3-input AND + 2-input OR

Which is faster?

In general: Using multiple levels (more than 2) will reduce the cost. Sometimes also delay. Sometimes a tradeoff between cost and delay.

Footnote: NAND would be used in place of all ANDs and ORs.

Multi-level Combinational Logic

Another Example: F = abc + abd + a'c'd' + b'c'd'

No convenient hand methods exist for multi-level logic simplification:

a) CAD Tools use sophisticated algorithms and heuristics

Guess what? These problems tend to be NP-complete

b) Humans and tools often exploit some special structure (example adder)

NAND-NAND & NOR-NOR Networks

DeMorgan's Law Review:

(a + b)' = a' b' a + b = (a' b')' (a b)' = a' + b' (a b) = (a' + b')'

push bubbles or introduce in pairs or remove pairs: (x')' = x.

NAND-NAND & NOR-NOR Networks

Mapping from AND/OR to NAND/NAND

Multi-level Networks

Convert to NANDs:

F = a(b + cd) + bc'

EXOR Function Implementations

Parity, addition mod 2

 $x \oplus y = x'y + xy'$

Another approach:

40