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❑ Hardware Description 

Language Overview 
❑ Verilog Introduction
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Announcements
❑ Problem Set one posted.  Start soon! 

❑ Due next Monday (another out Friday) 
❑ Contact me if you are still trying to get 

enrolled.

3



EE141

Hardware Description 
Languages



EE141

Design Entry
❑ Schematic entry/editing used 

to be the standard method in 
industry and universities. 

☺ Schematics are intuitive.  They 
match our use of gate-level or 
block diagrams. 

☺ Somewhat physical.  They 
imply a physical 
implementation. 

☹ Require a special tool (editor). 
☹ Unless hierarchy is carefully 

designed, schematics can be 
confusing and difficult to follow 
on large designs.

• Hardware Description Languages 
(HDLs) are the new standard 

– except for PC board design, where 
schematics are still used.
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Hardware Description Languages
• Basic Idea: 

– Language constructs describe circuits 
with two basic forms: 

▪ Structural descriptions:  connections 
of components.  Nearly one-to-one 
correspondence to with schematic 
diagram. 

▪ Behavioral descriptions: use high-
level constructs (similar to 
conventional programming) to describe 
the circuit function. 

• Originally invented for simulation. 
– “logic synthesis” tools exist to 

automatically convert to gate level 
representation. 

– High-level constructs greatly 
improves designer productivity. 

– However, this may lead you to falsely 
believe that hardware design can be 
reduced to writing programs*

“Structural” example: 
Decoder(output x0,x1,x2,x3; 
   inputs a,b) 
   { 
      wire abar, bbar; 
      inv(bbar, b); 
      inv(abar, a); 
      and(x0, abar, bbar); 
      and(x1, abar, b   ); 
      and(x2, a,    bbar); 
      and(x3, a,    b   ); 
   }  

“Behavioral” example: 
Decoder(output x0,x1,x2,x3; 
   inputs a,b) 
   { 
      switch [a b] 
 case 00: [x0 x1 x2 x3] = 0x8; 
 case 01: [x0 x1 x2 x3] = 0x4; 
 case 10: [x0 x1 x2 x3] = 0x2; 
 case 11: [x0 x1 x2 x3] = 0x1; 
      endswitch; 
   } 
  

Warning:  this is a fake HDL!

*New tools and languages exist for this - called “high level synthesis”.
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Sample Design Methodology

HDL 
Specification

Hierarchically defines 
structure and/or function 

of circuit.

Simulation

Verification: Does the design 
behave as required with regards 

to function, timing, and power 
consumption? 

Synthesis

Maps specification to 
resources of implementation 

platform (FPGA or ASIC).

Note:  This in not the entire story.  Other tools are useful for 
analyzing HDL specifications.  More on this later.
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Some Hardware Description Languages 
Verilog:  

▪ Simple C-like syntax for structural and behavior hardware constructs 
▪ Mature set of commercial tools for synthesis and simulation 
▪ Used in EECS 151 / 251A 

VHDL:  
▪ Semantically very close to Verilog 
▪ More syntactic overhead 
▪ Extensive type system for “synthesis time” checking 

System Verilog: 
▪ Enhances Verilog with strong typing along with other additions 
▪ Somewhat less mature tool-flow 

BlueSpec: 
▪ Invented at MIT 
▪ Originally built within the Haskell programming language 
▪ Now available commercially: bluespec.com 

Chisel: 
▪ Developed at UC Berkeley 
▪ Used in CS152, CS250 
▪ Available at: www.chisel-lang.org
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Verilog Introduction
❑ A module definition describes a component in a circuit 
❑ Two ways to describe module contents: 

▪ Structural Verilog 
– List of sub-components and how they are connected 
– Just like schematics, but using text 
– You get precise control over circuit details 
– May be necessary to map to special resources of the FPGA/ASIC 

▪ Behavioral Verilog 
– Describe what a component does, not how it does it 
– May be simpler to write than structural description 
– Synthesized into a circuit that has this behavior 
– Result is only as good as the tools 

❑ Build up a hierarchy of modules.  Top-level module is your 
entire design (or the environment to test your design). 

❑ Common approach is to use behavioral descriptions for 
“leaf cells” and structural to build hierarchy.
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Verilog Modules and Instantiation
❑ Modules define circuit components.   
❑ Instantiation defines hierarchy of the design.

module addr_cell (a, b, cin, s, cout); 
  input     a, b, cin; 
  output    s, cout; 
   
 
endmodule

Note: A module is not a function in the C sense.  There is no call and return 
mechanism.  Think of it more like a hierarchical data structure.  

Note: Verilog syntax allows port declarations in port list.

name port list

port declarations (input, 
output, or inout)

module body

module adder (A, B, S); 
        
addr_cell ac1 (              ); 
   
endmodule

Instance of addr_cell

... connections ...

keywords
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module xor_gate ( out, a, b ); 
  input     a, b; 
  output    out; 
  wire      aBar, bBar, t1, t2; 
 
  not invA (aBar, a); 
  not invB (bBar, b); 
  and and1 (t1, a, bBar); 
  and and2 (t2, b, aBar); 
  or  or1 (out, t1, t2); 
 
endmodule 

Structural Model - XOR example

▪ Notes:   
• The instantiated gates are not “executed”.  They are active always. 
• xor gate already exists as a built-in (so really no need to define it).

port list

module name

port declarations

instances
Built-in gates

Instance name
Interconnections (note output is first)

out

internal signal 
declarations
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Structural Example: 2-to1 mux

/* 2-input multiplexor in gates */ 
module mux2 (in0, in1, select, out); 
   input in0,in1,select; 
   output out; 
   wire s0,w0,w1; 

   not (s0, select); 
   and (w0, s0, in0), 
       (w1, select, in1); 
   or  (out, w0, w1); 

endmodule // mux2

C++ style 
comments

Multiple instances can 
share the same 
“master” name.

and (w0, a, b, c, d); 

Built-ins gates can 
have > 2 inputs. Ex:

Built-ins don’t need 
Instance names
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Instantiation, Signal Array, Named ports

module mux4 (in0, in1, in2, in3, select, out); 
input in0,in1,in2,in3; 
input [1:0] select; 
output out; 
wire w0,w1; 
  mux2 
    m0 (.select(select[0]), .in0(in0), .in1(in1), .out(w0)), 
    m1 (.select(select[0]), .in0(in2), .in1(in3), .out(w1)), 
    m3 (.select(select[1]), .in0(w0), .in1(w1), .out(out)); 
endmodule // mux4 

Signal array.  Declares select[1], select[0]

Named ports.  Highly recommended.

/* 2-input multiplexor in gates */ 
module mux2 (in0, in1, select, out); 
   input in0,in1,select; 
   output out; 
   wire s0,w0,w1; 
   not (s0, select); 
   and (w0, s0, in0), 
       (w1, select, in1); 
   or  (out, w0, w1); 
endmodule // mux2
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module foo (out, in1, in2); 
  input         in1, in2; 
  output        out; 
 
      assign out = in1 & in2; 

endmodule 

Simple Behavioral Model

“continuous assignment” 
Connects out to be the logical 
“and” of in1 and in2.

The assignment continuously happens, therefore any change on the 
rhs is reflected in out immediately (except for the small delay 
associated with the implementation of the &).   

Not like an assignment in C that takes place when the program 
counter gets to that place in the program.
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Example - Ripple Adder
module FullAdder(a, b, ci, r, co);  
 input a, b, ci; 
 output r, co;  
  
 assign r = a ^ b ^ ci; 
  assign co = a&ci | a&b | b&cin; 

endmodule 

module Adder(A, B, R); 
  input [3:0] A; 
  input [3:0] B; 
  output [4:0] R; 

  wire c1, c2, c3; 
  FullAdder 
  add0(.a(A[0]), .b(B[0]), .ci(1’b0), .co(c1),   .r(R[0]) ), 
  add1(.a(A[1]), .b(B[1]), .ci(c1),   .co(c2),   .r(R[1]) ), 
  add2(.a(A[2]), .b(B[2]), .ci(c2),   .co(c3),   .r(R[2]) ), 
  add3(.a(A[3]), .b(B[3]), .ci(c3),   .co(R[4]), .r(R[3]) ); 
endmodule
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Verilog Operators
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Verilog Numbers

14  ordinary decimal number 
-14 2’s complement representation 
12’b0000_0100_0110    binary number (“_” is ignored) 
12’h046    hexadecimal number with 12 bits 

By default, Values are unsigned 
e.g.,  C[4:0] = A[3:0] + B[3:0]; 
if A = 0110 (6) and B = 1010 (treated as 10 not -6) 
    C = 10000 not 00000 
i.e., B is zero-padded, not sign-extended 

wire signed [31:0] x; 
Declares a signed (2’s complement) signal array.

Constants:

Signal Values:
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assign R = X | (Y & ~Z); 

assign r = &X; 

assign R = (a == 1’b0) ? X : Y; 

assign P = 8'hff; 

assign P = X * Y;  

assign P[7:0] = {4{X[3]}, X[3:0]}; 

assign {cout, R} = X + Y + cin; 

assign Y = A << 2; 

assign Y = {A[1], A[0], 1’b0, 1’b0};

use of bit-wise Boolean operators

Continuous Assignment Examples
wire [3:0] A, X,Y,R,Z; 
wire [7:0] P; 
wire r, a, cout, cin;

example 
reduction 
operator

conditional operator

example constants

arithmetic operators (use with care!)

(ex: sign-extension)

bit field concatenation

bit shift operator

equivalent bit shift

20
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Non-continuous Assignments
A bit strange from a hardware specification point of view.  

Shows off Verilog roots as a simulation language.

“reg” type declaration, needed for always 
block assignment.  Not really a register  in 

this case.  Just a Verilog idiosyncrasy.

“always” block example:

keyword
“sensitivity” list, 

triggers the action in 
the body.

module and_or_gate (out, in1, in2, in3); 
  input  in1, in2, in3; 
  output  out; 
  reg   out; 
 
  always @(in1 or in2 or in3) begin 
     out = (in1 & in2) | in3; 
  end 

endmodule brackets multiple statements (not 
necessary in this example.

Isn’t this just: assign out = (in1 & in2) | in3;?   
                                                     Why bother? 21
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Always Blocks
Always blocks give us some constructs that are impossible or 

awkward in continuous assignments.  

module mux4 (in0, in1, in2, in3, select, out); 
   input in0,in1,in2,in3; 
   input [1:0] select; 
   output      out; 
   reg         out; 
    
 always @ (in0 in1 in2 in3 select) 
  case (select) 
   2’b00: out=in0; 
   2’b01: out=in1; 
   2’b10: out=in2; 
   2’b11: out=in3; 
  endcase 
endmodule // mux4

case statement example:

keyword The statement(s) corresponding 
to whichever constant matches 

“select”, get applied.

Couldn’t we just do this with nested “if”s?   
                                                     Well yes and no! 22
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Always Blocks

module mux4 (in0, in1, in2, in3, select, out); 
   input in0,in1,in2,in3; 
   input [1:0] select; 
   output      out; 
   reg         out; 
    
 always @ (in0 in1 in2 in3 select) 
  if (select == 2’b00) out=in0; 
      else if (select == 2’b01) out=in1; 
           else if (select == 2’b10) out=in2; 
                else out=in3; 
endmodule // mux4

Nested if-else example:

Nested if structure leads to “priority logic” structure, with different 
delays for different inputs (in3 to out delay > than in0 to out delay).       

Case version treats all inputs the same.
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Defining Processor ALU in 5 mins
❑ Modularity is essential to the success of large designs 
❑ High-level primitives enable direct synthesis of behavioral descriptions 

(functions such as additions, subtractions, shifts (<< and >>), etc.

A[31:0] B[31:0]

+ - *

0 1 0 1

32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Example: A 32-bit ALU Function Table

F2 F1 F0 

0   0   0 
0   0   1 
0   1   0 
0   1   1 
1    0   X

Function 

A + B 
A + 1 
A - B 
A - 1 
A * B
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Module Definitions
2-to-1 MUX 3-to-1 MUX

32-bit Adder

32-bit Subtracter 16-bit Multiplier

module mux32two(i0,i1,sel,out); 

input [31:0] i0,i1; 
input sel; 
output [31:0] out; 

assign out = sel ? i1 : i0; 

endmodule

module mux32three(i0,i1,i2,sel,out); 
input [31:0] i0,i1,i2; 
input [1:0] sel; 
output [31:0] out; 
reg [31:0] out; 

always @ (i0 or i1 or i2 or sel) 
begin 
  case (sel) 
    2’b00: out = i0; 
    2’b01: out = i1; 
    2’b10: out = i2; 
    default: out = 32’bx; 
  endcase 
end 
endmodule

module add32(i0,i1,sum); 

input [31:0] i0,i1; 
output [31:0] sum; 

assign sum = i0 + i1; 

endmodule
module sub32(i0,i1,diff); 

input [31:0] i0,i1; 
output [31:0] diff; 

assign diff = i0 - i1; 

endmodule

module mul16(i0,i1,prod); 

input [15:0] i0,i1; 
output [31:0] prod; 

// this is a magnitude multiplier 
// signed arithmetic later 
assign prod = i0 * i1; 

endmodule
25
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module alu(a, b, f, r); 
  input [31:0] a, b; 
  input [2:0] f; 
  output [31:0] r; 

  wire [31:0] addmux_out, submux_out; 
  wire [31:0] add_out, sub_out, mul_out; 

  mux32two   adder_mux(.io(b), .i1(32'd1), .sel(f[0]), .out(addmux_out)); 
  mux32two   sub_mux(.io(b), .i1(32'd1), .sel(f[0]), .out(submux_out)); 
  add32      our_adder(.i0(a), .i1(addmux_out), .sum(add_out)); 
  sub32      our_subtracter(.i0(a), .i1(submux_out), .diff(sub_out)); 
  mul16      our_multiplier(.i0(a[15:0]), .i1(b[15:0]), .prod(mul_out)); 
  mux32three output_mux(.i0(add_out), .i1(sub_out), .i2(mul_out), .sel(f[2:1]), .out(r)); 
endmodule

Top-Level ALU Declaration
❑ Given submodules: 

❑ Declaration of the ALU Module:

module mux32two(i0,i1,sel,out); 

module mux32three(i0,i1,i2,sel,out); 

module add32(i0,i1,sum); 

module sub32(i0,i1,diff); 

module mul16(i0,i1,prod);

module 
names

(unique) 
instance 
names

corresponding 
wires/regs in 
module alu

intermediate output nodes

26

A[31:0] B[31:0]

+ - *
0 1 0 1
32’d1 32’d1

00 01 10

R[31:0]

F[0]
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module alu(a, b, f, r); 
  input [31:0] a, b; 
  input [2:0] f; 
  output [31:0] r; 
  always @ (a or b or f) 
    case (f) 
      3’b000:  r = a + b; 
      3’b001:  r = a + 1’b1; 
      3’b010:  r = a – b; 
      3’b011:  r = a – 1’b1; 
      3’b100:  r = a * b; 
      default: r = 32’bx; 
    endcase 
endmodule 

  

Top-Level ALU Declaration, take 2
❑ No Hierarchy: 
❑ Declaration of the ALU Module:

A[31:0] B[31:0]

+ - *
0 1 0 1
32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Will this synthesize into 2 adders and 
2 subtractors or 1 of each?
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Review - Ripple Adder Example
module FullAdder(a, b, ci, r, co);  
 input a, b, ci; 
 output r, co;  
  
 assign r = a ^ b ^ ci; 
  assign co = a&ci + a&b + b&cin; 

endmodule 

module Adder(A, B, R); 
  input [3:0] A; 
  input [3:0] B; 
  output [4:0] R; 

  wire c1, c2, c3; 
  FullAdder 
  add0(.a(A[0]), .b(B[0]), .ci(1’b0), .co(c1),   .r(R[0]) ), 
  add1(.a(A[1]), .b(B[1]), .ci(c1),   .co(c2),   .r(R[1]) ), 
  add2(.a(A[2]), .b(B[2]), .ci(c2),   .co(c3),   .r(R[2]) ), 
  add3(.a(A[3]), .b(B[3]), .ci(c3),   .co(R[4]), .r(R[3]) ); 
endmodule

28
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Example - Ripple Adder Generator

module Adder(A, B, R); 
  parameter N = 4; 
  input [N-1:0] A; 
  input [N-1:0] B; 
  output [N:0] R; 
  wire [N:0] C; 

  genvar i; 

  generate  
    for (i=0; i<N; i=i+1) begin:bit       
      FullAdder add(.a(A[i], .b(B[i]), .ci(C[i]), .co(C[i+1]), .r(R[i]));     

end  
  endgenerate  

  assign C[0] = 1’b0; 
  assign R[N] = C[N]; 
endmodule

Parameters give us a way to generalize our designs.  A module becomes a “generator” for 
different variations.   Enables design/module reuse.  Can simplify testing.

variable exists only in the specification - not in the final circuit.

Keyword that denotes synthesis-time operations

Declare a parameter with default value.    
Note:  this is not a port.  Acts like a “synthesis-time” constant.

For-loop creates instances (with unique names)

Adder adder4 ( ... ); 

Adder #(.N(64)) 
adder64 ( ... ); 

Overwrite parameter 
N at instantiation.

Replace all occurrences of “4” with “N”.

29
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More on Generate Loop
Permits variable declarations, modules, user defined primitives, 
gate primitives, continuous assignments, initial blocks and always 
blocks to be instantiated multiple times using a for-loop.

// Gray-code to binary-code converter 
module gray2bin1 (bin, gray); 
    parameter SIZE = 8; 
    output [SIZE-1:0] bin; 
    input  [SIZE-1:0] gray; 
  
    genvar i; 
  
    generate for (i=0; i<SIZE; i=i+1) begin:bit 
      assign bin[i] = ^gray[SIZE-1:i]; 
    end endgenerate 
  endmodule 

Loop must have constant 
bounds

generate if-else-if based on an expression that is deterministic 
at the time the design is synthesized. 
generate case : selecting case expression must be deterministic 
at the time the design is synthesized. 

variable exists only in 
the specification - not in 

the final circuit.
Keywords that denotes 

synthesis-time operations

For-loop creates instances 
of assignments

30
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Verilog in EECS 151/251A
❑ We use behavioral modeling at the bottom of the hierarchy 
❑ Use instantiation to 1) build hierarchy and, 2) map to FPGA 

and ASIC resources not supported by synthesis. 
❑ Favor continuous assign and avoid always blocks unless: 

▪ no other alternative: ex: state elements, case 
▪ helps readability and clarity of code: ex: large nested if else 

❑ Use named ports. 
❑ Verilog is a big language.  This is only an introduction.   

▪ Complete IEEE Verilog-Standard document (1364-2005) linked to class 
website. 

▪ Harris & Harris book chapter 4 is a good source. 
▪ Be careful of what you read on the web.  Many bad examples out there. 
▪ We will be introducing more useful constructs throughout the semester.  Stay 

tuned!
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