
EE141

EECS 151/251A
Spring	2023	
Digital	Design	and	Integrated	
Circuits
Instructor:		
Wawrzynek

Lecture 3: Verilog 1:
Combinational Logic
Circuits

EE141

Outline
❑ Hardware Description

Language Overview
❑ Verilog Introduction

2

EE141

Announcements
❑ Problem Set one posted. Start soon!

❑ Due next Monday (another out Friday)
❑ Contact me if you are still trying to get

enrolled.

3

EE141

Hardware Description
Languages

EE141

Design Entry
❑ Schematic entry/editing used

to be the standard method in
industry and universities.

☺ Schematics are intuitive. They
match our use of gate-level or
block diagrams.

☺ Somewhat physical. They
imply a physical
implementation.

☹ Require a special tool (editor).
☹ Unless hierarchy is carefully

designed, schematics can be
confusing and difficult to follow
on large designs.

• Hardware Description Languages
(HDLs) are the new standard

– except for PC board design, where
schematics are still used.

5

EE141

Hardware Description Languages
• Basic Idea:

– Language constructs describe circuits
with two basic forms:

▪ Structural descriptions: connections
of components. Nearly one-to-one
correspondence to with schematic
diagram.

▪ Behavioral descriptions: use high-
level constructs (similar to
conventional programming) to describe
the circuit function.

• Originally invented for simulation.
– “logic synthesis” tools exist to

automatically convert to gate level
representation.

– High-level constructs greatly
improves designer productivity.

– However, this may lead you to falsely
believe that hardware design can be
reduced to writing programs*

“Structural” example:
Decoder(output x0,x1,x2,x3;
 inputs a,b)
 {
 wire abar, bbar;
 inv(bbar, b);
 inv(abar, a);
 and(x0, abar, bbar);
 and(x1, abar, b);
 and(x2, a, bbar);
 and(x3, a, b);
 }

“Behavioral” example:
Decoder(output x0,x1,x2,x3;
 inputs a,b)
 {
 switch [a b]
 case 00: [x0 x1 x2 x3] = 0x8;
 case 01: [x0 x1 x2 x3] = 0x4;
 case 10: [x0 x1 x2 x3] = 0x2;
 case 11: [x0 x1 x2 x3] = 0x1;
 endswitch;
 }

Warning: this is a fake HDL!

*New tools and languages exist for this - called “high level synthesis”.
6

EE141

Sample Design Methodology

HDL
Specification

Hierarchically defines
structure and/or function

of circuit.

Simulation

Verification: Does the design
behave as required with regards

to function, timing, and power
consumption?

Synthesis

Maps specification to
resources of implementation

platform (FPGA or ASIC).

Note: This in not the entire story. Other tools are useful for
analyzing HDL specifications. More on this later.

7

EE141

Some Hardware Description Languages
Verilog:

▪ Simple C-like syntax for structural and behavior hardware constructs
▪ Mature set of commercial tools for synthesis and simulation
▪ Used in EECS 151 / 251A

VHDL:
▪ Semantically very close to Verilog
▪ More syntactic overhead
▪ Extensive type system for “synthesis time” checking

System Verilog:
▪ Enhances Verilog with strong typing along with other additions
▪ Somewhat less mature tool-flow

BlueSpec:
▪ Invented at MIT
▪ Originally built within the Haskell programming language
▪ Now available commercially: bluespec.com

Chisel:
▪ Developed at UC Berkeley
▪ Used in CS152, CS250
▪ Available at: www.chisel-lang.org

8

http://bluespec.com
http://www.chisel-lang.org

EE141

Verilog Introduction

EE141

Verilog Introduction
❑ A module definition describes a component in a circuit
❑ Two ways to describe module contents:

▪ Structural Verilog
– List of sub-components and how they are connected
– Just like schematics, but using text
– You get precise control over circuit details
– May be necessary to map to special resources of the FPGA/ASIC

▪ Behavioral Verilog
– Describe what a component does, not how it does it
– May be simpler to write than structural description
– Synthesized into a circuit that has this behavior
– Result is only as good as the tools

❑ Build up a hierarchy of modules. Top-level module is your
entire design (or the environment to test your design).

❑ Common approach is to use behavioral descriptions for
“leaf cells” and structural to build hierarchy.

10

EE141

Verilog Modules and Instantiation
❑ Modules define circuit components.
❑ Instantiation defines hierarchy of the design.

module addr_cell (a, b, cin, s, cout);
 input a, b, cin;
 output s, cout;

endmodule

Note: A module is not a function in the C sense. There is no call and return
mechanism. Think of it more like a hierarchical data structure.

Note: Verilog syntax allows port declarations in port list.

name port list

port declarations (input,
output, or inout)

module body

module adder (A, B, S);

addr_cell ac1 ();

endmodule

Instance of addr_cell

... connections ...

keywords

11

EE141

module xor_gate (out, a, b);
 input a, b;
 output out;
 wire aBar, bBar, t1, t2;

 not invA (aBar, a);
 not invB (bBar, b);
 and and1 (t1, a, bBar);
 and and2 (t2, b, aBar);
 or or1 (out, t1, t2);

endmodule

Structural Model - XOR example

▪ Notes:
• The instantiated gates are not “executed”. They are active always.
• xor gate already exists as a built-in (so really no need to define it).

port list

module name

port declarations

instances
Built-in gates

Instance name
Interconnections (note output is first)

out

internal signal
declarations

12

EE141

Structural Example: 2-to1 mux

/* 2-input multiplexor in gates */
module mux2 (in0, in1, select, out);
 input in0,in1,select;
 output out;
 wire s0,w0,w1;

 not (s0, select);
 and (w0, s0, in0),
 (w1, select, in1);
 or (out, w0, w1);

endmodule // mux2

C++ style
comments

Multiple instances can
share the same
“master” name.

and (w0, a, b, c, d);

Built-ins gates can
have > 2 inputs. Ex:

Built-ins don’t need
Instance names

13

EE141

Instantiation, Signal Array, Named ports

module mux4 (in0, in1, in2, in3, select, out);
input in0,in1,in2,in3;
input [1:0] select;
output out;
wire w0,w1;
 mux2
 m0 (.select(select[0]), .in0(in0), .in1(in1), .out(w0)),
 m1 (.select(select[0]), .in0(in2), .in1(in3), .out(w1)),
 m3 (.select(select[1]), .in0(w0), .in1(w1), .out(out));
endmodule // mux4

Signal array. Declares select[1], select[0]

Named ports. Highly recommended.

/* 2-input multiplexor in gates */
module mux2 (in0, in1, select, out);
 input in0,in1,select;
 output out;
 wire s0,w0,w1;
 not (s0, select);
 and (w0, s0, in0),
 (w1, select, in1);
 or (out, w0, w1);
endmodule // mux2

14

EE141

module foo (out, in1, in2);
 input in1, in2;
 output out;

 assign out = in1 & in2;

endmodule

Simple Behavioral Model

“continuous assignment”
Connects out to be the logical
“and” of in1 and in2.

The assignment continuously happens, therefore any change on the
rhs is reflected in out immediately (except for the small delay
associated with the implementation of the &).

Not like an assignment in C that takes place when the program
counter gets to that place in the program.

15

EE141

Example - Ripple Adder
module FullAdder(a, b, ci, r, co);
 input a, b, ci;
 output r, co;

 assign r = a ^ b ^ ci;
 assign co = a&ci | a&b | b&cin;

endmodule

module Adder(A, B, R);
 input [3:0] A;
 input [3:0] B;
 output [4:0] R;

 wire c1, c2, c3;
 FullAdder
 add0(.a(A[0]), .b(B[0]), .ci(1’b0), .co(c1), .r(R[0])),
 add1(.a(A[1]), .b(B[1]), .ci(c1), .co(c2), .r(R[1])),
 add2(.a(A[2]), .b(B[2]), .ci(c2), .co(c3), .r(R[2])),
 add3(.a(A[3]), .b(B[3]), .ci(c3), .co(R[4]), .r(R[3]));
endmodule

16

EE141

Verilog Operators

17

EE141

Verilog Numbers

14 ordinary decimal number
-14 2’s complement representation
12’b0000_0100_0110 binary number (“_” is ignored)
12’h046 hexadecimal number with 12 bits

By default, Values are unsigned
e.g., C[4:0] = A[3:0] + B[3:0];
if A = 0110 (6) and B = 1010 (treated as 10 not -6)
 C = 10000 not 00000
i.e., B is zero-padded, not sign-extended

wire signed [31:0] x;
Declares a signed (2’s complement) signal array.

Constants:

Signal Values:

18

EE141

Verilog Assignment
Types

EE141

assign R = X | (Y & ~Z);

assign r = &X;

assign R = (a == 1’b0) ? X : Y;

assign P = 8'hff;

assign P = X * Y;

assign P[7:0] = {4{X[3]}, X[3:0]};

assign {cout, R} = X + Y + cin;

assign Y = A << 2;

assign Y = {A[1], A[0], 1’b0, 1’b0};

use of bit-wise Boolean operators

Continuous Assignment Examples
wire [3:0] A, X,Y,R,Z;
wire [7:0] P;
wire r, a, cout, cin;

example
reduction
operator

conditional operator

example constants

arithmetic operators (use with care!)

(ex: sign-extension)

bit field concatenation

bit shift operator

equivalent bit shift

20

EE141

Non-continuous Assignments
A bit strange from a hardware specification point of view.

Shows off Verilog roots as a simulation language.

“reg” type declaration, needed for always
block assignment. Not really a register in

this case. Just a Verilog idiosyncrasy.

“always” block example:

keyword
“sensitivity” list,

triggers the action in
the body.

module and_or_gate (out, in1, in2, in3);
 input in1, in2, in3;
 output out;
 reg out;

 always @(in1 or in2 or in3) begin
 out = (in1 & in2) | in3;
 end

endmodule brackets multiple statements (not
necessary in this example.

Isn’t this just: assign out = (in1 & in2) | in3;?
 Why bother? 21

EE141

Always Blocks
Always blocks give us some constructs that are impossible or

awkward in continuous assignments.

module mux4 (in0, in1, in2, in3, select, out);
 input in0,in1,in2,in3;
 input [1:0] select;
 output out;
 reg out;

 always @ (in0 in1 in2 in3 select)
 case (select)
 2’b00: out=in0;
 2’b01: out=in1;
 2’b10: out=in2;
 2’b11: out=in3;
 endcase
endmodule // mux4

case statement example:

keyword The statement(s) corresponding
to whichever constant matches

“select”, get applied.

Couldn’t we just do this with nested “if”s?
 Well yes and no! 22

EE141

Always Blocks

module mux4 (in0, in1, in2, in3, select, out);
 input in0,in1,in2,in3;
 input [1:0] select;
 output out;
 reg out;

 always @ (in0 in1 in2 in3 select)
 if (select == 2’b00) out=in0;
 else if (select == 2’b01) out=in1;
 else if (select == 2’b10) out=in2;
 else out=in3;
endmodule // mux4

Nested if-else example:

Nested if structure leads to “priority logic” structure, with different
delays for different inputs (in3 to out delay > than in0 to out delay).

Case version treats all inputs the same.

23

EE141

Defining Processor ALU in 5 mins
❑ Modularity is essential to the success of large designs
❑ High-level primitives enable direct synthesis of behavioral descriptions

(functions such as additions, subtractions, shifts (<< and >>), etc.

A[31:0] B[31:0]

+ - *

0 1 0 1

32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Example: A 32-bit ALU Function Table

F2 F1 F0

0 0 0
0 0 1
0 1 0
0 1 1
1 0 X

Function

A + B
A + 1
A - B
A - 1
A * B

24

EE141

Module Definitions
2-to-1 MUX 3-to-1 MUX

32-bit Adder

32-bit Subtracter 16-bit Multiplier

module mux32two(i0,i1,sel,out);

input [31:0] i0,i1;
input sel;
output [31:0] out;

assign out = sel ? i1 : i0;

endmodule

module mux32three(i0,i1,i2,sel,out);
input [31:0] i0,i1,i2;
input [1:0] sel;
output [31:0] out;
reg [31:0] out;

always @ (i0 or i1 or i2 or sel)
begin
 case (sel)
 2’b00: out = i0;
 2’b01: out = i1;
 2’b10: out = i2;
 default: out = 32’bx;
 endcase
end
endmodule

module add32(i0,i1,sum);

input [31:0] i0,i1;
output [31:0] sum;

assign sum = i0 + i1;

endmodule
module sub32(i0,i1,diff);

input [31:0] i0,i1;
output [31:0] diff;

assign diff = i0 - i1;

endmodule

module mul16(i0,i1,prod);

input [15:0] i0,i1;
output [31:0] prod;

// this is a magnitude multiplier
// signed arithmetic later
assign prod = i0 * i1;

endmodule
25

EE141

module alu(a, b, f, r);
 input [31:0] a, b;
 input [2:0] f;
 output [31:0] r;

 wire [31:0] addmux_out, submux_out;
 wire [31:0] add_out, sub_out, mul_out;

 mux32two adder_mux(.io(b), .i1(32'd1), .sel(f[0]), .out(addmux_out));
 mux32two sub_mux(.io(b), .i1(32'd1), .sel(f[0]), .out(submux_out));
 add32 our_adder(.i0(a), .i1(addmux_out), .sum(add_out));
 sub32 our_subtracter(.i0(a), .i1(submux_out), .diff(sub_out));
 mul16 our_multiplier(.i0(a[15:0]), .i1(b[15:0]), .prod(mul_out));
 mux32three output_mux(.i0(add_out), .i1(sub_out), .i2(mul_out), .sel(f[2:1]), .out(r));
endmodule

Top-Level ALU Declaration
❑ Given submodules:

❑ Declaration of the ALU Module:

module mux32two(i0,i1,sel,out);

module mux32three(i0,i1,i2,sel,out);

module add32(i0,i1,sum);

module sub32(i0,i1,diff);

module mul16(i0,i1,prod);

module
names

(unique)
instance
names

corresponding
wires/regs in
module alu

intermediate output nodes

26

A[31:0] B[31:0]

+ - *
0 1 0 1
32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

EE141

module alu(a, b, f, r);
 input [31:0] a, b;
 input [2:0] f;
 output [31:0] r;
 always @ (a or b or f)
 case (f)
 3’b000: r = a + b;
 3’b001: r = a + 1’b1;
 3’b010: r = a – b;
 3’b011: r = a – 1’b1;
 3’b100: r = a * b;
 default: r = 32’bx;
 endcase
endmodule

Top-Level ALU Declaration, take 2
❑ No Hierarchy:
❑ Declaration of the ALU Module:

A[31:0] B[31:0]

+ - *
0 1 0 1
32’d1 32’d1

00 01 10

R[31:0]

F[0]

F[2:1]

F[2:0]

Will this synthesize into 2 adders and
2 subtractors or 1 of each?

EE141

Review - Ripple Adder Example
module FullAdder(a, b, ci, r, co);
 input a, b, ci;
 output r, co;

 assign r = a ^ b ^ ci;
 assign co = a&ci + a&b + b&cin;

endmodule

module Adder(A, B, R);
 input [3:0] A;
 input [3:0] B;
 output [4:0] R;

 wire c1, c2, c3;
 FullAdder
 add0(.a(A[0]), .b(B[0]), .ci(1’b0), .co(c1), .r(R[0])),
 add1(.a(A[1]), .b(B[1]), .ci(c1), .co(c2), .r(R[1])),
 add2(.a(A[2]), .b(B[2]), .ci(c2), .co(c3), .r(R[2])),
 add3(.a(A[3]), .b(B[3]), .ci(c3), .co(R[4]), .r(R[3]));
endmodule

28

EE141

Example - Ripple Adder Generator

module Adder(A, B, R);
 parameter N = 4;
 input [N-1:0] A;
 input [N-1:0] B;
 output [N:0] R;
 wire [N:0] C;

 genvar i;

 generate
 for (i=0; i<N; i=i+1) begin:bit
 FullAdder add(.a(A[i], .b(B[i]), .ci(C[i]), .co(C[i+1]), .r(R[i]));

end
 endgenerate

 assign C[0] = 1’b0;
 assign R[N] = C[N];
endmodule

Parameters give us a way to generalize our designs. A module becomes a “generator” for
different variations. Enables design/module reuse. Can simplify testing.

variable exists only in the specification - not in the final circuit.

Keyword that denotes synthesis-time operations

Declare a parameter with default value.
Note: this is not a port. Acts like a “synthesis-time” constant.

For-loop creates instances (with unique names)

Adder adder4 (...);

Adder #(.N(64))
adder64 (...);

Overwrite parameter
N at instantiation.

Replace all occurrences of “4” with “N”.

29

EE141

More on Generate Loop
Permits variable declarations, modules, user defined primitives,
gate primitives, continuous assignments, initial blocks and always
blocks to be instantiated multiple times using a for-loop.

// Gray-code to binary-code converter
module gray2bin1 (bin, gray);
 parameter SIZE = 8;
 output [SIZE-1:0] bin;
 input [SIZE-1:0] gray;

 genvar i;

 generate for (i=0; i<SIZE; i=i+1) begin:bit
 assign bin[i] = ^gray[SIZE-1:i];
 end endgenerate
 endmodule

Loop must have constant
bounds

generate if-else-if based on an expression that is deterministic
at the time the design is synthesized.
generate case : selecting case expression must be deterministic
at the time the design is synthesized.

variable exists only in
the specification - not in

the final circuit.
Keywords that denotes

synthesis-time operations

For-loop creates instances
of assignments

30

EE141

Verilog in EECS 151/251A
❑ We use behavioral modeling at the bottom of the hierarchy
❑ Use instantiation to 1) build hierarchy and, 2) map to FPGA

and ASIC resources not supported by synthesis.
❑ Favor continuous assign and avoid always blocks unless:

▪ no other alternative: ex: state elements, case
▪ helps readability and clarity of code: ex: large nested if else

❑ Use named ports.
❑ Verilog is a big language. This is only an introduction.

▪ Complete IEEE Verilog-Standard document (1364-2005) linked to class
website.

▪ Harris & Harris book chapter 4 is a good source.
▪ Be careful of what you read on the web. Many bad examples out there.
▪ We will be introducing more useful constructs throughout the semester. Stay

tuned!

31

